Please use this identifier to cite or link to this item:
Scopus Web of Science® Altmetric
Type: Journal article
Title: Solution-processed dendrimer-based TADF materials for deep-red OLEDs
Author: Puttock, E.V.
Ranasinghe, C.S.K.
Babazadeh, M.
Jang, J.
Huang, D.M.
Tsuchiya, Y.
Adachi, C.
Burn, P.L.
Shaw, P.E.
Citation: Macromolecules, 2020; 58(23):10375-10385
Publisher: American Chemical Society
Issue Date: 2020
ISSN: 0024-9297
Statement of
Emma V. Puttock, Chandana Sampath Kumara Ranasinghe, Mohammad Babazadeh, Junhyuk Jang, David M. Huang, Youichi Tsuchiya, Chihaya Adachi, Paul L. Burn, and Paul E. Shaw
Abstract: We report the first example of a thermally activated delayed fluorescence (TADF) poly(dendrimer), composed of a norbornenyl-derived polymer backbone and dendritic side-chain chromophores comprising 2,3-dicyanopyrazino as the electron acceptor and a first-generation fluorenylcarbazole derivative as the electron donor. The TADF poly(dendrimer) homopolymer, with one dendritic side chain attached to each monomer unit, emitted deep-red light. The emission of the poly(dendrimer) was found to be red-shifted relative to the nonpolymeric doubly dendronized emitter composed of the same components. The simple dendrimer was found to have a solution photoluminescence quantum yield (PLQY) of around 70%. In contrast, the poly(dendrimer) had a PLQY of 9%, which was attributed to intramolecular interchromophore interactions. An interesting feature of the poly(dendrimer) was that oxygen did not quench the TADF emission. We found that the PLQY of the simple dendrimer decreased markedly in neat films, whereas that of the poly(dendrimer) did not, with both having a solid-state PLQY of around 10%. The results suggest that intrapolymer chromophore–chromophore interactions observed in solution for the poly(dendrimer) were similar to the intermolecular chromophore–chromophore interactions of the dendrimer in the solid state. Simple two-layer organic light-emitting diodes comprising nondoped films of the materials and an electron transport layer showed red emission with CIE coordinates of (x > 0.66, y < 0.34). The dendrimer-based device had a maximum external quantum efficiency of 2.4%, which is among the best for solution-processed deep-red emissive TADF-based OLEDs but in a simpler device architecture.
Rights: © 2020 American Chemical Society
DOI: 10.1021/acs.macromol.0c02235
Grant ID:
Published version:
Appears in Collections:Aurora harvest 8
Chemistry and Physics publications

Files in This Item:
There are no files associated with this item.

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.