Please use this identifier to cite or link to this item: http://hdl.handle.net/2440/130406
Citations
Scopus Web of Science® Altmetric
?
?
Type: Journal article
Title: Comparative phylogeography of alpine invertebrates indicates deep lineage diversification and historical refugia in the Australian Alps
Author: Endo, Y.
Nash, M.
Hoffmann, A.A.
Slatyer, R.
Miller, A.D.
Citation: Journal of Biogeography, 2015; 42(1):89-102
Publisher: Wiley
Issue Date: 2015
ISSN: 0305-0270
1365-2699
Statement of
Responsibility: 
Yoshinori Endo, Michael Nash, Ary A. Hoffmann, Rachel Slatyer, Adam D. Miller
Abstract: Aim: Comparative phylogeographic analyses of alpine biota from the Northern Hemisphere have linked patterns of genetic diversification to glacial expansion and contraction events in the Pliocene and Pleistocene. Furthermore, the extent of diversification across species groups appears to be associated with vagility. In this study we test whether these patterns apply to a geologically stable system from eastern Australia with comparatively shallow elevational gradients and minimal influence from historical glacial activity. Location: The Australian Alps, Victoria, eastern Australia. Methods: We considered phylogeographic patterns across five alpine invertebrate species based on mitochondrial and nuclear DNA sequence data. Bayesian inference methods were used to estimate species phylogenies and divergence times among lineages. GIS tools were used to map interpopulation genetic divergence and intrapopulation genetic diversity estimates and to visualize spatial patterns across species, providing insights into patterns of endemism and demographic history. Results: Phylogeographic patterns and the timing of lineage diversification were consistent across taxonomic groups. Mountain summits harbour highly differentiated haplogroups, including summits connected by high-elevational plateaus, pointing to diversifications being maintained since the early to mid-Pleistocene. These findings are consistent with previous studies of alpine mammals and reptiles, demonstrating a high degree of endemism in this region, regardless of species vagility. Main conclusions: The fine spatial scales at which deep genetic differentiation among alpine communities was observed in this study are unprecedented. This suggests that glacial periods have had less of an impact on species distributions and genetic diversity than they have in alpine systems in the Northern Hemisphere. Historical gene flow among sky-island populations has been limited despite connecting snowlines during glacial periods, suggesting that factors other than snow cover have influenced patterns of gene flow in this region. These findings emphasize the unique phylogeographic history affecting Victorian alpine biodiversity, and the importance of conserving biodiversity from multiple mountain summits in this region of high endemism.
Keywords: Alpine biodiversity; Australian Alps; conservation biogeography; conservation planning; genetic diversity; GIS; invertebrates; mitochondrial DNA; nuclear DNA; phylogeography
Rights: © 2014 John Wiley & Sons Ltd.
RMID: 1000032988
DOI: 10.1111/jbi.12387
Appears in Collections:Ecology, Evolution and Landscape Science publications

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.