Please use this identifier to cite or link to this item: http://hdl.handle.net/2440/130415
Citations
Scopus Web of Science® Altmetric
?
?
Type: Conference paper
Title: Simultaneous planar measurements of gas and particle velocities in particle-laden flows: proof-of-concept
Author: Bi, X.
Sun, Z.
Lau, T.
Alwahabi, Z.
Nathan, G.
Citation: Proceedings of the 22nd Australasian Fluid Mechanics Conference (AFMC2020), 2020 / pp.1-4
Publisher: The University of Queensland
Issue Date: 2020
ISBN: 9781742723419
Conference Name: 22nd Australasian Fluid Mechanics Conference (AFMC) (07 Dec 2020 - 10 Dec 2020 : Brisbane, Australia-Online)
Statement of
Responsibility: 
Xiaopeng Bi, Zhiwei Sun, Timothy Lau, Zeyad Alwahabi and Graham Nathan
Abstract: A laser-based technique is reported, employing simultaneous laser-induced fluorescence (LIF) and phosphorescence (LIP) to respectively mark the gas- and particle- phases and allow their simultaneous velocity measurement in a particle-laden flow. The technique discriminates the phases by optically separating the fluorescent and phosphorescent signals from each other and also from the scattering signals, thorough the novel use of optical filters and temporal separation. A proof-of-concept demonstration was conducted with using 250 μm PMMA spherical particles and 4 μm BAM:Eu²⁺ phosphorescent tracers, suspended in a water cuvette. Under 355 nm excitation (3rd harmonic of the Nd:YAG laser), both PMMA fluorescent and BAM:Eu²⁺ phosphorescent signals are shown to be sufficiently strong for imaging with CCD cameras, and sufficiently separable with using spectral filters and temporal profiles.
Keywords: Laser diagnostics; particle-laden flows; experimental methods; fluid velocity; particle velocity
Rights: Creative Commons Attribution noncommercial
RMID: 1000031569
DOI: 10.14264/9eb1c68
Grant ID: http://purl.org/au-research/grants/arc/DP180102045
Published version: http://www.afms.org.au/proceedings/22.html
Appears in Collections:Mechanical Engineering conference papers

Files in This Item:
File Description SizeFormat 
hdl_130415.pdfPublished version1.26 MBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.