Please use this identifier to cite or link to this item:
Scopus Web of Science® Altmetric
Type: Journal article
Title: Optical properties of the atomically precise C₄ core [Au₉(PPh₃)₈]³⁺ cluster probed by transient absorption spectroscopy and time-dependent density functional theory
Other Titles: Optical properties of the atomically precise C(4) core [Au(9)(PPh(3))(8)](3+) cluster probed by transient absorption spectroscopy and time-dependent density functional theory
Author: Madridejos, J.
Harada, T.
Falcinella, A.
Small, T.
Golovko, V.B.
Andersson, G.G.
Metha, G.F.
Kee, T.W.
Citation: The Journal of Physical Chemistry C: Energy Conversion and Storage, Optical and Electronic Devices, Interfaces, Nanomaterials, and Hard Matter, 2021; 125(3):2033-2044
Publisher: American Chemical Society
Issue Date: 2021
ISSN: 1932-7447
Statement of
Jenica Marie L. Madridejos, Takaaki Harada, Alexander J. Falcinella, Thomas D. Small, Vladimir B. Golovko, Gunther G. Andersson ... et al.
Abstract: Structural isomerism of [Au9(PPh3)8]3+ has been studied experimentally, mostly concerning the symmetry of the Au9 core. Recently, the C4 isomer of [Au9(PPh3)8]3+ has been shown to exist in solution phase while the D2h isomer is present in the solid state [Inorg. Chem.2017, 56, 8319–8325]. In this work, geometric, electronic, and optical properties of C4 [Au9(PPh3)8]3+ are investigated by using the combined second-order density-functional tight-binding (DFTB2) method and time-dependent density functional theory (TD-DFT) calculations with spin–orbit coupling. Additionally, the excited-state relaxation dynamics of the [Au9(PPh3)8]3+ cluster in dichloromethane and methanol solutions are studied using femtosecond transient absorption spectroscopy. [Au9(PPh3)8]3+ is optically pumped to different excited states by using 432, 532, and 603 nm light. For all three pump wavelengths, the photoexcitation event induces an excited-state absorption (ESA) band centered at 600 nm with decay time constants of 2.0 and 45 ps, which are attributed to intersystem crossing and nonradiative relaxation of [Au9(PPh3)8]3+, respectively. On the other hand, optical pumping of [Au9(PPh3)8]3+ using 432 nm light gives rise to an additional ESA band at 900 nm. This band exhibits fast relaxation through internal conversion with a time constant of ∼0.3 ps. Our combined computational and experimental study reveals that the excitation wavelength-dependent relaxation dynamics of the [Au9(PPh3)8]3+ cluster are related to the different electron densities of the excited states of [Au9(PPh3)8]3+, consistent with it possessing molecular-like electronic states.
Rights: © 2021 American Chemical Society
DOI: 10.1021/acs.jpcc.0c08838
Grant ID:
Published version:
Appears in Collections:Aurora harvest 8
Chemistry and Physics publications

Files in This Item:
There are no files associated with this item.

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.