Please use this identifier to cite or link to this item:
Scopus Web of Science® Altmetric
Type: Journal article
Title: Optical forces and torques on eccentric nanoscale core-shell particles
Author: Sun, Q.
Dholakia, K.
Greentree, A.D.
Citation: ACS Photonics, 2021; 8(4):1103-1111
Publisher: American Chemical Society
Issue Date: 2021
ISSN: 2330-4022
Statement of
Qiang Sun, Kishan Dholakia and Andrew D. Greentree
Abstract: The optical trapping and manipulation of small particles is an important tool for probing fluid properties at the microscale. In particular, microrheology exploits the manipulation and rotation of micron-scale particles to probe local viscosity, especially where these properties may be perturbed as a function of their local environment, for example in the vicinity of cells. To this end, birefringent particles are useful as they can be readily controlled using optically induced forces and torques, and thereby used to probe their local environment. However, the magnitude of optical torques that can be induced in birefringent particles is small, and a function of the particle diameter, meaning that rotational flow cannot readily be probed on length scales much small than the micron level. Here we show modeling that demonstrates that eccentric spherical core–shell nanoparticles can be used to generate considerable optical torques. The eccentricity is a result of the displacement of the center of the core from the shell. Our results show that, for particles ranging from 90 to 180 nm in diameter, we may achieve rotation rates exceeding 800 Hz. This fills a missing size gap in the rotation of microparticles with optical forces. The diameter of particle we may rotate is almost an order of magnitude smaller than the smallest birefringent particles that have been successfully rotated to date. The rotation of eccentric core–shell nanoparticles therefore makes an important contribution to biophotonics and creates new opportunities for rheology in nanoscale environments.
Keywords: Optical rotation of nanoparticle; optical tweezers and trapping; core−shell particle; asymmetry; Gaussian beam; polarization; biophotonics; nanorheology
Rights: © 2021 American Chemical Society
RMID: 1000039885
DOI: 10.1021/acsphotonics.0c01825
Grant ID:
Appears in Collections:Physics publications

Files in This Item:
There are no files associated with this item.

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.