Please use this identifier to cite or link to this item:
https://hdl.handle.net/2440/130632
Citations | ||
Scopus | Web of Science® | Altmetric |
---|---|---|
?
|
?
|
Type: | Journal article |
Title: | Rechargeable potassium–selenium batteries |
Author: | Huang, X.L. Guo, Z. Dou, S.X. Wang, Z.M. |
Citation: | Advanced Functional Materials, 2021; 31(29):1-21 |
Publisher: | Wiley |
Issue Date: | 2021 |
ISSN: | 1616-301X 1616-3028 |
Statement of Responsibility: | Xiang Long Huang, Zaiping Guo, Shi Xue Dou, Zhiming M. Wang |
Abstract: | Rechargeable potassium–selenium (K–Se) batteries, as an emerging electrochemical energy storage system, has recently captured intensive attention due to the desirable natural abundance and low redox potential of elemental potassium as well as the relatively high electronic conductivity and impressive theoretical volumetric capacity of elemental selenium. Although great progress on cathode materials design and electrochemical performance improvement has been made, K–Se batteries are still confronted with a series of key challenges, including low reactive activity, shuttle effect, volume expansion, potassium dendrite growth, and high chemical activity of potassium metal. The recent advances in rechargeable K–Se batteries are comprehensively summarized with an emphasis on discussing the electrochemical mechanisms and central challenges, presenting the synthesis, properties, and electrochemical performance of selenium-based cathode materials, and extending potential tactics for tackling the key issues and developmental directions for future research. |
Keywords: | Challenges; electrochemical mechanism; materials design; potassium–selenium batteries; tactic |
Description: | First published: 06 May 2021 |
Rights: | © 2021 Wiley-VCH GmbH |
DOI: | 10.1002/adfm.202102326 |
Grant ID: | http://purl.org/au-research/grants/arc/DP200101862 http://purl.org/au-research/grants/arc/DP200100365 http://purl.org/au-research/grants/arc/DP210101486 |
Appears in Collections: | Aurora harvest 8 Chemistry and Physics publications |
Files in This Item:
There are no files associated with this item.
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.