Please use this identifier to cite or link to this item:
Scopus Web of Science® Altmetric
Type: Journal article
Title: Rechargeable potassium–selenium batteries
Author: Huang, X.L.
Guo, Z.
Dou, S.X.
Wang, Z.M.
Citation: Advanced Functional Materials, 2021; 31(29):1-21
Publisher: Wiley
Issue Date: 2021
ISSN: 1616-301X
Statement of
Xiang Long Huang, Zaiping Guo, Shi Xue Dou, Zhiming M. Wang
Abstract: Rechargeable potassium–selenium (K–Se) batteries, as an emerging electrochemical energy storage system, has recently captured intensive attention due to the desirable natural abundance and low redox potential of elemental potassium as well as the relatively high electronic conductivity and impressive theoretical volumetric capacity of elemental selenium. Although great progress on cathode materials design and electrochemical performance improvement has been made, K–Se batteries are still confronted with a series of key challenges, including low reactive activity, shuttle effect, volume expansion, potassium dendrite growth, and high chemical activity of potassium metal. The recent advances in rechargeable K–Se batteries are comprehensively summarized with an emphasis on discussing the electrochemical mechanisms and central challenges, presenting the synthesis, properties, and electrochemical performance of selenium-based cathode materials, and extending potential tactics for tackling the key issues and developmental directions for future research.
Keywords: Challenges; electrochemical mechanism; materials design; potassium–selenium batteries; tactic
Description: First published: 06 May 2021
Rights: © 2021 Wiley-VCH GmbH
DOI: 10.1002/adfm.202102326
Grant ID:
Appears in Collections:Aurora harvest 8
Chemistry and Physics publications

Files in This Item:
There are no files associated with this item.

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.