Please use this identifier to cite or link to this item:
Scopus Web of Science® Altmetric
Type: Journal article
Title: Enhanced removals of micropollutants in binary organic systems by biomass derived porous carbon/peroxymonosulfate
Author: Tian, W.
Lin, J.
Zhang, H.
Duan, X.
Sun, H.
Wang, H.
Wang, S.
Citation: Journal of Hazardous Materials, 2020; 408:1-10
Publisher: Elsevier
Issue Date: 2020
ISSN: 0304-3894
Statement of
Wenjie Tian, Jingkai Lin, Huayang Zhang, Xiaoguang Duan, Hongqi Sun, Hao Wang, Shaobin Wang
Abstract: Water pollution usually involves multiple pollutants, and their degradation mechanisms are complicated. In this study, we investigated the degradation of single and binary pollutants (phenol and p-hydroxybenzoic acid (HBA)) in water, using biomass-derived N-doped porous carbon (Y-PC) for peroxymonosulfate (PMS) activation and we found better kinetics and efficiencies of degradation in binary pollutants than single pollutant systems. Electron paramagnetic resonance (EPR), quenching experiments, and electrochemical tests indicated that •OH, SO4•−, O2•−, and 1O2 accounted for the catalytic oxidation of phenol/HBA, while the electron-transfer pathway had an additional contribution to phenol degradation. We unveiled that the HBA degradation rate was similar in the binary and single systems due to the non-selective attack of the micropollutants by •OH, SO4•−, O2•− and 1O2. However, phenol degradation rate was significantly accelerated in the binary phenol/HBA system as compared to that in the single phenol solution, due to the exclusive and selective role of electron transfer pathway. In the binary micropollutant system, a fortified electron-transfer pathway over phenol directly expedited its decomposition and contributed indirectly to this process. This study provides new insights into porous carbon-based advanced oxidation processes for the simultaneous removal of multicomponent contaminants in practical applications.
Keywords: Biomass-derived N-doped carbon; peroxymonosulfate; radical; nonradical; binary; micropollutants
Rights: © 2020 Elsevier B.V. All rights reserved.
DOI: 10.1016/j.jhazmat.2020.124459
Grant ID:
Published version:
Appears in Collections:Aurora harvest 8
Chemical Engineering publications

Files in This Item:
There are no files associated with this item.

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.