Please use this identifier to cite or link to this item: https://hdl.handle.net/2440/131082
Citations
Scopus Web of Science® Altmetric
?
?
Full metadata record
DC FieldValueLanguage
dc.contributor.authorLi, L.-
dc.contributor.authorTang, C.-
dc.contributor.authorCui, X.-
dc.contributor.authorZheng, Y.-
dc.contributor.authorWang, X.-
dc.contributor.authorXu, H.-
dc.contributor.authorZhang, S.-
dc.contributor.authorShao, T.-
dc.contributor.authorDavey, K.-
dc.contributor.authorQiao, S.-
dc.date.issued2021-
dc.identifier.citationAngewandte Chemie International Edition, 2021; 60(25):14131-14137-
dc.identifier.issn1433-7851-
dc.identifier.issn1521-3773-
dc.identifier.urihttp://hdl.handle.net/2440/131082-
dc.descriptionFirst published: 14 April 2021-
dc.description.abstractTransformation of atmospheric nitrogen (N2) to ammonia (NH3) is a long-sought goal for human being. However, present one-step N2 fixation is impeded by tough activation of the N≡N bond and low selectivity to NH3. Here we report fixation of N2-to-NH3 can be advantageously decoupled to a two-step process with one problem solved independently and effectively in each step, including: 1) facile activation of N2 to NOx- by a non-thermal plasma technique, and; 2) highly selective conversion of NOx- to NH3 by electrocatalytic reduction. Importantly, this process uses air and water as low-cost raw materials for scalable ammonia production under ambient conditions. For NOx- reduction to NH3 we present a novel surface boron-rich core-shell nickel boride electrocatalyst. Combining a series of physical characterizations and in situ spectrometric measurements, we reveal that the surface boron-rich feature is the key to boosting activity, selectivity, and stability via enhanced NOx- adsorption, and suppression of hydrogen evolution and surface Ni oxidation. Consequently, a highly significant ammonia production of 198.3 µmol h-1 cm-2 was achieved, together with nearly 100% Faradaic efficiency.-
dc.description.statementofresponsibilityLaiquan Li, Cheng Tang, Xiaoyang Cui, Yao Zheng, Xuesi Wang, Haolan Xu ... et al.-
dc.language.isoen-
dc.publisherWiley-
dc.rights© 2021 Wiley-VCH GmbH.-
dc.source.urihttp://dx.doi.org/10.1002/anie.202104394-
dc.subjectBoron-rich surface-
dc.subjectElectrocatalytic nitrate reduction-
dc.subjectNitrogen fixation-
dc.subjectammonia production-
dc.subjectplasma-
dc.titleEfficient nitrogen fixation to ammonia through integration of plasma oxidation with electrocatalytic reduction-
dc.typeJournal article-
dc.identifier.doi10.1002/anie.202104394-
dc.relation.granthttp://purl.org/au-research/grants/arc/FL170100154-
pubs.publication-statusPublished-
dc.identifier.orcidLi, L. [0000-0002-3301-9029]-
dc.identifier.orcidTang, C. [0000-0002-5167-1192]-
dc.identifier.orcidZheng, Y. [0000-0002-2411-8041]-
dc.identifier.orcidWang, X. [0000-0002-2477-8111]-
dc.identifier.orcidDavey, K. [0000-0002-7623-9320]-
dc.identifier.orcidQiao, S. [0000-0002-1220-1761] [0000-0002-4568-8422]-
Appears in Collections:Aurora harvest 8
Physics publications

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.