Please use this identifier to cite or link to this item: http://hdl.handle.net/2440/131243
Citations
Scopus Web of Science® Altmetric
?
?
Type: Journal article
Title: Search for continuous gravitational waves from ten H.E.S.S. sources using a hidden Markov model
Author: Beniwal, D.
Clearwater, P.
Dunn, L.
Melatos, A.
Ottaway, D.
Citation: Physical Review D, 2021; 103(8):083009-1-083009-28
Publisher: American Physical Society
Issue Date: 2021
ISSN: 2470-0010
2470-0029
Statement of
Responsibility: 
Deeksha Beniwal, Patrick Clearwater, Liam Dunn, Andrew Melatos, and David Ottaway
Abstract: Isolated neutron stars are prime targets for continuous-wave (CW) searches by ground-based gravitational-wave interferometers. Results are presented from a CW search targeting ten pulsars. The search uses a semicoherent algorithm, which combines the maximum-likelihood F-statistic with a hidden Markov model (HMM) to efficiently detect and track quasi-monochromatic signals which wander randomly in frequency. The targets, which are associated with TeV sources detected by the High Energy Stereoscopic System (H.E.S.S.), are chosen to test for gravitational radiation from young, energetic pulsars with strong γ-ray emission, and take maximum advantage of the frequency tracking capabilities of HMM compared to other CW search algorithms. The search uses data from the second observing run of the Advanced Laser Interferometer Gravitational-Wave Observatory (aLIGO). It scans 1−Hz sub-bands around f∗, 4f∗/3, and 2f∗, where f∗ denotes the star’s rotation frequency, in order to accommodate a physically plausible frequency mismatch between the electromagnetic and gravitational-wave emission. The 24 sub-bands searched in this study return 5,256 candidates above the Gaussian threshold with a false alarm probability of 1% per sub-band per target. Only 12 candidates survive the three data quality vetoes which are applied to separate non-Gaussian artifacts from true astrophysical signals. CW searches using the data from subsequent observing runs will clarify the status of the remaining candidates.
Rights: © 2021 American Physical Society
RMID: 1000040410
DOI: 10.1103/PhysRevD.103.083009
Grant ID: http://purl.org/au-research/grants/arc/CE170100004
Appears in Collections:Physics publications

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.