Please use this identifier to cite or link to this item: https://hdl.handle.net/2440/131257
Citations
Scopus Web of Science® Altmetric
?
?
Full metadata record
DC FieldValueLanguage
dc.contributor.authorTang, C.-
dc.contributor.authorChen, L.-
dc.contributor.authorLi, H.-
dc.contributor.authorLi, L.-
dc.contributor.authorJiao, Y.-
dc.contributor.authorZheng, Y.-
dc.contributor.authorXu, H.-
dc.contributor.authorDavey, K.-
dc.contributor.authorQiao, S.-
dc.date.issued2021-
dc.identifier.citationJournal of the American Chemical Society, 2021; 43(20):4819-4827-
dc.identifier.issn0002-7863-
dc.identifier.issn1520-5126-
dc.identifier.urihttp://hdl.handle.net/2440/131257-
dc.description.abstractProduct selectivity in multielectron electrocatalytic reactions is crucial to energy conversion efficiency and chemical production. However, a present practical drawback is the limited understanding of actual catalytic active sites. Here, using as a prototype single-atom catalysts (SACs) in acidic oxygen reduction reaction (ORR), we report the structure–property relationship of catalysts and show for the first time that molecular-level local structure, including first and second coordination spheres (CSs), rather than individual active atoms, synergistically determines the electrocatalytic response. ORR selectivity on Co-SACs can be tailored from a four-electron to a two-electron pathway by modifying first (N or/and O coordination) and second (C–O–C groups) CSs. Using combined theoretical predictions and experiments, including X-ray absorption fine structure analyses and in situ infrared spectroscopy, we confirm that the unique selectivity change originates from the structure-dependent shift of active sites from the center Co atom to the O-adjacent C atom. We show this optimizes the electronic structure and *OOH adsorption behavior on active sites to give the present “best” activity and selectivity of >95% for acidic H₂O₂ electrosynthesis.-
dc.description.statementofresponsibilityCheng Tang, Ling Chen, Haijing Li, Laiquan Li, Yan Jiao, Yao Zheng, Haolan Xu, Kenneth Davey, and Shi-Zhang Qiao-
dc.language.isoen-
dc.publisherAmerican Chemical Society (ACS)-
dc.rights© 2021 American Chemical Society-
dc.source.urihttp://dx.doi.org/10.1021/jacs.1c03135-
dc.titleTailoring acidic oxygen reduction selectivity on single-atom catalysts via modification of first and second coordination spheres-
dc.typeJournal article-
dc.identifier.doi10.1021/jacs.1c03135-
dc.relation.granthttp://purl.org/au-research/grants/arc/FL170100154-
dc.relation.granthttp://purl.org/au-research/grants/arc/DE190100636-
pubs.publication-statusPublished-
dc.identifier.orcidTang, C. [0000-0002-5167-1192]-
dc.identifier.orcidChen, L. [0000-0002-8898-5769]-
dc.identifier.orcidLi, L. [0000-0002-3301-9029]-
dc.identifier.orcidJiao, Y. [0000-0003-1329-4290]-
dc.identifier.orcidZheng, Y. [0000-0002-2411-8041]-
dc.identifier.orcidDavey, K. [0000-0002-7623-9320]-
dc.identifier.orcidQiao, S. [0000-0002-1220-1761] [0000-0002-4568-8422]-
Appears in Collections:Aurora harvest 8
Chemical Engineering publications

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.