Please use this identifier to cite or link to this item: https://hdl.handle.net/2440/137751
Citations
Scopus Web of Science® Altmetric
?
?
Type: Journal article
Title: Defining species-specific and conserved interactions of apical membrane protein 1 during erythrocyte invasion in malaria to inform multi-species vaccines
Author: Drew, D.R.
Wilson, D.W.
Weiss, G.E.
Yeoh, L.M.
G. Henshall, I.
Crabb, B.S.
Dutta, S.
Gilson, P.R.
Beeson, J.G.
Citation: Cellular and Molecular Life Sciences, 2023; 80(3):74-1-74-19
Publisher: Springer
Issue Date: 2023
ISSN: 1420-682X
1420-9071
Statement of
Responsibility: 
Damien R. Drew, Danny W. Wilson, Gretchen E. Weiss, Lee M. Yeoh, Isabelle G. Henshall, Brendan S. Crabb, Sheetij Dutta, Paul R. Gilson, James G. Beeson
Abstract: Plasmodium falciparum and P. vivax are the major causes of human malaria, and P. knowlesi is an important additional cause in SE Asia. Binding of apical membrane antigen 1 (AMA1) to rhoptry neck protein 2 (RON2) was thought to be essential for merozoite invasion of erythrocytes by Plasmodium spp. Our findings reveal that P. falciparum and P. vivax have diverged and show species-specific binding of AMA1 to RON2, determined by a β-hairpin loop in RON2 and specific residues in AMA1 Loop1E. In contrast, cross-species binding of AMA1 to RON2 is retained between P. vivax and P. knowlesi. Mutation of specific amino acids in AMA1 Loop1E in P. falciparum or P. vivax ablated RON2 binding without impacting erythrocyte invasion. This indicates that the AMA1–RON2-loop interaction is not essential for invasion and additional AMA1 interactions are involved. Mutations in AMA1 that disrupt RON2 binding also enable escape of invasion inhibitory antibodies. Therefore, vaccines and therapeutics will need to be broader than targeting only the AMA1–RON2 interaction. Antibodies targeting AMA1 domain 3 had greater invasion-inhibitory activity when RON2-loop binding was ablated, suggesting this domain is a promising additional target for vaccine development. Targeting multiple AMA1 interactions involved in invasion may enable vaccines that generate more potent inhibitory antibodies and address the capacity for immune evasion. Findings on specific residues for invasion function and species divergence and conservation can inform novel vaccines and therapeutics against malaria caused by three species, including the potential for cross-species vaccines.
Keywords: Plasmodium falciparum; Plasmodium vivax; Antibodies; RON2; Peptides; Therapeutics; Inhibition
Description: Published online: 27 February 2023
Rights: © The Author(s) 2023. This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/ by/4.0/.
DOI: 10.1007/s00018-023-04712-z
Grant ID: http://purl.org/au-research/grants/nhmrc/GNT1134989
Published version: http://dx.doi.org/10.1007/s00018-023-04712-z
Appears in Collections:Molecular and Biomedical Science publications

Files in This Item:
File Description SizeFormat 
hdl_137751.pdfPublished version3.19 MBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.