Please use this identifier to cite or link to this item: https://hdl.handle.net/2440/17760
Citations
Scopus Web of Science® Altmetric
?
?
Full metadata record
DC FieldValueLanguage
dc.contributor.authorClarke, Richard Johnen
dc.contributor.authorCox, Stephen Michaelen
dc.contributor.authorWilliams, P. M.en
dc.contributor.authorJensen, O. E.en
dc.date.issued2005en
dc.identifier.citationJournal of Fluid Mechanics, 2005; 545 (December):397-426en
dc.identifier.issn0022-1120en
dc.identifier.urihttp://hdl.handle.net/2440/17760-
dc.description.abstractMotivated by devices such as the atomic force microscope, we compute the drag experienced by a cylindrical body of circular or rectangular cross-section oscillating at small amplitude near a plane wall. The body lies parallel to the wall and oscillates normally to it; the body is assumed to be long enough for the dominant flow to be two-dimensional. The flow is parameterized by a frequency parameter γ² (a Strouhal number) and the wall–body separation Δ (scaled on body radius). Numerical solutions of the unsteady Stokes equations obtained using finite-difference computations in bipolar coordinates (for circular cross-sections) and boundary-element computations (for rectangular cross-sections) are used to determine the drag on the body. Numerical results are validated and extended using asymptotic predictions (for circular cylinders) obtained at all extremes of (γ, Δ)-parameter space. Regions in parameter space for which the wall has a significant effect on drag are identified.en
dc.description.statementofresponsibilityR. J. Clarke, S. M. Cox, P. M. Williams and O. E. Jensenen
dc.language.isoenen
dc.publisherCambridge University Pressen
dc.rightsCopyright © 2005 Cambridge University Pressen
dc.source.urihttp://www.journals.cambridge.org/action/displayAbstract?fromPage=online&aid=358740en
dc.titleThe drag on a microcantilever oscillating near a wallen
dc.typeJournal articleen
dc.contributor.schoolSchool of Mathematical Sciencesen
dc.identifier.doi10.1017/S0022112005006907en
Appears in Collections:Mathematical Sciences publications

Files in This Item:
File SizeFormat 
hdl17760.pdf537.03 kBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.