Please use this identifier to cite or link to this item: https://hdl.handle.net/2440/17853
Type: Journal article
Title: Development of a 3D non-hydrostatic pressure model for free surface flows
Author: Lee, J.
Teubner, M.
Nixon, J.
Gill, P.
Citation: Australia and New Zealand Industrial and Applied Mathematics (ANZIAM) Journal, 2005; 46(5 ELECTRONIC SUPPL.):623-636
Publisher: Australian Mathematics Publ Assoc Inc
Issue Date: 2005
ISSN: 1446-8735
1446-8735
Abstract: A three-dimensional, non-hydrostatic pressure, numerical model for free surface flows is presented. By decomposing the pressure term into hydrostatic and non-hydrostatic parts, the numerical model uses an integrated time step with two fractional steps. In the first fractional step, the momentum equations are solved without the hydrostatic pressure term using Newton's method in conjunction with the generalised minimal residual (GMRES) method. This combined method does not require the determination of a Jacobian matrix explicitly but simply the product of the Jacobian and a vector, thereby reducing the amount of storage required and significantly decreasing the overall computational time required. By using Newton's method, the numerical model can handle implicitly almost all variables, unlike many other numerical models. Hence numerical stability is achieved effectively. In the second fractional step, the pressure-Poisson equation is solved iteratively with a preconditioned linear GMRES method. It is shown that preconditioning reduces the processing time dramatically. After the new pressure field is obtained the intermediate velocities, which are calculated from the previous fractional step, are updated and then these updated velocities preserve the local mass conservation. The newly developed model is verified against analytical solutions, with good agreement.
Description: This paper is made available with the permission of the Australian Mathematical Society Inc.
Rights: Copyright © Australian Mathematical
Published version: http://anziamj.austms.org.au/V46/CTAC2004/Lee1/home.html
Appears in Collections:Applied Mathematics publications
Aurora harvest 6

Files in This Item:
File Description SizeFormat 
hdl_17853.pdf456.3 kBPublisher's PDF View/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.