Please use this identifier to cite or link to this item:
https://hdl.handle.net/2440/22857
Citations | ||
Scopus | Web of ScienceĀ® | Altmetric |
---|---|---|
?
|
?
|
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Wong, K. | - |
dc.contributor.author | Mazumdar, J. | - |
dc.contributor.author | Pincombe, B. | - |
dc.contributor.author | Worthley, S. | - |
dc.contributor.author | Sanders, P. | - |
dc.contributor.author | Abbott, D. | - |
dc.date.issued | 2006 | - |
dc.identifier.citation | Medical and Biological Engineering and Computing, 2006; 44(11):971-982 | - |
dc.identifier.issn | 0140-0118 | - |
dc.identifier.issn | 1741-0444 | - |
dc.identifier.uri | http://hdl.handle.net/2440/22857 | - |
dc.description | The original publication is available at www.springerlink.com | - |
dc.description.abstract | This paper presents a mathematical model of biological structures in relation to coronary arteries with atherosclerosis. A set of equations has been derived to compute blood flow through these transport vessels with variable axial and radial geometries. Three-dimensional reconstructions of diseased arteries from cadavers have shown that atherosclerotic lesions spiral through the artery. The theoretical framework is able to explain the phenomenon of lesion distribution in a helical pattern by examining the structural parameters that affect the flow resistance and wall shear stress. The study is useful for connecting the relationship between the arterial wall geometries and hemodynamics of blood. It provides a simple, elegant and non-invasive method to predict flow properties for geometrically complex pathology at micro-scale levels and with low computational cost. | - |
dc.description.statementofresponsibility | Kelvin Wong, Jagannath Mazumdar, Brandon Pincombe, Stephen G. Worthley, Prashanthan Sanders and Derek Abbott | - |
dc.language.iso | en | - |
dc.publisher | Peter Peregrinus Ltd | - |
dc.source.uri | http://www.springerlink.com/content/728l5765011256g4/?p=0e77959c6388442399c0b03d62dd4f80&pi=0 | - |
dc.subject | Atherosclerosis | - |
dc.subject | Axial and radial asymmetry | - |
dc.subject | Spiraling lesion | - |
dc.subject | Resistance to flow ratio | - |
dc.subject | Wall shear stress | - |
dc.title | Theoretical modeling of micro-scale biological phenomena in human coronary arteries | - |
dc.type | Journal article | - |
dc.identifier.doi | 10.1007/s11517-006-0113-6 | - |
pubs.publication-status | Published | - |
dc.identifier.orcid | Sanders, P. [0000-0003-3803-8429] | - |
dc.identifier.orcid | Abbott, D. [0000-0002-0945-2674] | - |
Appears in Collections: | Aurora harvest 6 Electrical and Electronic Engineering publications |
Files in This Item:
There are no files associated with this item.
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.