Please use this identifier to cite or link to this item:
https://hdl.handle.net/2440/24119
Citations | ||
Scopus | Web of Science® | Altmetric |
---|---|---|
?
|
?
|
Type: | Journal article |
Title: | Optimal linear estimation and data fusion |
Author: | Elliott, R. Van Der Hoek, J. |
Citation: | IEEE Transactions on Automatic Control, 2006; 51(4):686-689 |
Publisher: | IEEE-Inst Electrical Electronics Engineers Inc |
Issue Date: | 2006 |
ISSN: | 0018-9286 |
Statement of Responsibility: | Elliott, R.J. ; van der Hoek, J. |
Abstract: | Optimal mean square linear estimators are determined for general uncorrelated noise. We allow the noise variance matrix in the observation process to be singular. This requires properties of generalized inverses which are developed in Section II. The proofs appear to be new. When there are two observation sequences the optimal method of recursively fusing the two is determined. We derive a new formula for the covariance of the two estimates which then provides exact dynamics for a fused estimate. |
Keywords: | data fusion optimal linear estimation |
Description: | ©2006 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE. |
DOI: | 10.1109/TAC.2006.872768 |
Appears in Collections: | Applied Mathematics publications Aurora harvest 6 |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
hdl_24119.pdf | 159.2 kB | Publisher's PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.