Please use this identifier to cite or link to this item:
Scopus Web of Science® Altmetric
Full metadata record
DC FieldValueLanguage
dc.contributor.authorHarmer, G.-
dc.contributor.authorAbbott, D.-
dc.identifier.citationStatistical Science: a review journal, 1999; 14(2):206-213-
dc.description.abstractWe introduce Parrondo’s paradox that involves games of chance. We consider two fair gambling games, A and B, both of which can be made to have a losing expectation by changing a biasing parameter ε . When the two games are played in any alternating order, a winning expectation is produced, even though A and B are now losing games when played individually. This strikingly counter-intuitive result is a consequence of discrete-time Markov chains and we develop a heuristic explanation of the phenomenon in terms of a Brownian ratchet model. As well as having possible applications in electronic signal processing, we suggest important applications in a wide range of physical processes, biological models, genetic models and sociological models. Its impact on stock market models is also an interesting open question. © 1999 Institute of Mathematical Statistics.-
dc.description.statementofresponsibilityG. P. Harmer and D. Abbott-
dc.publisherInstitute of Mathematical Sciences-
dc.titleParrondo's paradox-
dc.typeJournal article-
dc.identifier.orcidAbbott, D. [0000-0002-0945-2674]-
Appears in Collections:Aurora harvest 6
Electrical and Electronic Engineering publications

Files in This Item:
There are no files associated with this item.

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.