Please use this identifier to cite or link to this item:
Scopus Web of ScienceĀ® Altmetric
Type: Journal article
Title: Oxygen-sensing pathway for SK channels in the ovine adrenal medulla
Author: Keating, D.
Rychkov, G.
Giacomin, P.
Roberts, M.
Citation: Clinical and Experimental Pharmacology and Physiology, 2005; 32(10):882-887
Publisher: Blackwell Publishing Asia
Issue Date: 2005
ISSN: 0305-1870
Statement of
Damien J Keating, Grigori Y Rychkov, Paul Giacomin and Michael L Roberts
Abstract: 1. The intracellular pathways that modulate the opening of oxygen-sensitive ion channels during periods of hypoxia are poorly understood. Different tissues appear to use either NADPH oxidase or a rotenone-sensitive mechanism as an oxygen sensor. The aim of the present study was to identify the oxygen-sensing pathway in the oxygen-sensitive sheep adrenal medullary chromaffin cell (AMCC). 2. The whole-cell patch-clamp technique was used to measure K+ currents in dissociated adult ovine chromaffin cells as well as SK channel currents expressed in the H4IIE cell line. 3. Diphenyliodonium, an inhibitor of NADPH oxidase, had no effect on the hypoxia-evoked closure of K+ channels in primary AMCC, whereas the mitochondrial inhibitor rotenone abolished the hypoxia-evoked response. Both these compounds significantly reduced K+ current amplitude under normoxic conditions. 4. One possible mechanism through which the oxygen sensor may modulate K+ channel activity is by altering the redox state of the cell. In sheep AMCC, altering the redox state by the addition of H2O2 to the extracellular solution increased K+ conductance. 5. The oxygen-sensitive K+ (Ko2) channels in sheep chromaffin cells are from the SK family and the whole-cell conductance of cells expressing mouse SK2 or SK3, but not human SK1, was increased by H2O2 and decreased by the reducing agent dithiothreitol. 6. These studies show that, in sheep AMCC, Ko2 channels are modulated via a rotenone-sensitive mechanism and that alteration of the cellular redox state mimics the change produced by alterations in Po2. In a heterologous expression system, SK2 and SK3 channels, the channels that initiate hypoxia-evoked changes in AMCC function, are modulated appropriately by changes in cellular redox state.
Keywords: Chromaffin Cells
Adrenal Medulla
Cell Line, Tumor
Hydrogen Peroxide
Biphenyl Compounds
Onium Compounds
Potassium Channels
Patch-Clamp Techniques
Signal Transduction
Cell Hypoxia
Membrane Potentials
Description: The definitive version is available at
DOI: 10.1111/j.1440-1681.2010.04279.x
Published version:
Appears in Collections:Aurora harvest 6
Molecular and Biomedical Science publications

Files in This Item:
There are no files associated with this item.

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.