Please use this identifier to cite or link to this item:
https://hdl.handle.net/2440/2884
Citations | ||
Scopus | Web of Science® | Altmetric |
---|---|---|
?
|
?
|
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Mi, Jianchun | en |
dc.contributor.author | Antonia, R. A. | en |
dc.date.issued | 1995 | en |
dc.identifier.citation | Physical Review E, 1995; 51(5):4466-4468 | en |
dc.identifier.issn | 1063-651X | en |
dc.identifier.uri | http://hdl.handle.net/2440/2884 | - |
dc.description.abstract | A linear relation between a normalized, time (t) dependent, statistically stationary quantity (z) and the normalized conditional expectation (r) of ∂2z/∂t2 allows r to generally satisfy two conditions subject to the stationarity requirement. Experimental data for both temperature and vorticity in several turbulent flows indicate that this relation appears universal. As a result, the exact expression derived by Pope and Ching [Phys. Fluids A 5, 1529 (1993)] for the probability density function (PDF) of any stationary quantity should generally reduce to the simpler form obtained by Ching [Phys. Rev. Lett. 70, 283 (1993)]. | en |
dc.description.statementofresponsibility | J. Mi and R. A. Antonia | en |
dc.language.iso | en | en |
dc.publisher | American Physical Society | en |
dc.rights | ©1995 American Physical Society | en |
dc.title | General relation for stationary probability density functions | en |
dc.type | Journal article | en |
dc.contributor.school | School of Mechanical Engineering | en |
dc.identifier.doi | 10.1103/PhysRevE.51.4466 | en |
Appears in Collections: | Mechanical Engineering publications |
Files in This Item:
File | Size | Format | |
---|---|---|---|
hdl_2884.pdf | 128.62 kB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.