Please use this identifier to cite or link to this item: http://hdl.handle.net/2440/3596
Citations
Scopus Web of Science® Altmetric
?
?
Full metadata record
DC FieldValueLanguage
dc.contributor.authorVarghese, M.en
dc.contributor.authorYates, S.en
dc.date.issued2002en
dc.identifier.citationJournal of Functional Analysis, 2002; 188(1):111-136en
dc.identifier.issn0022-1236en
dc.identifier.urihttp://hdl.handle.net/2440/3596-
dc.description.abstractWe study Harper operators and the closely related discrete magnetic Laplacians (DML) on a graph with a free action of a discrete group, as defined by Sunada (Sun). A main result in this paper is that the spectral density function of DMLs associated to rational weight functions on graphs with a free action of an amenable discrete group can be approximated by the average spectral density function of the DMLs on a regular exhaustion, with either Dirichlet or Neumann boundary conditions. This then gives a criterion for the existence of gaps in the spectrum of the DML, as well as other interesting spectral properties of such DMLs. The technique used incorporates some results of algebraic number theory.en
dc.description.statementofresponsibilityVarghese Mathai and Stuart Yatesen
dc.description.urihttp://www.elsevier.com/wps/find/journaldescription.cws_home/622879/description#descriptionen
dc.language.isoenen
dc.publisherAcademic Press Incen
dc.subjectHarper operator; approximation theorems; amenable groups; von Neumann algebras; graphs; Fuglede–Kadison determinant; algebraic number theoryen
dc.titleApproximating spectral invariants of Harper operators on graphsen
dc.typeJournal articleen
dc.identifier.rmid0020020104en
dc.identifier.doi10.1006/jfan.2001.3841en
dc.identifier.pubid60621-
pubs.library.collectionPure Mathematics publicationsen
pubs.verification-statusVerifieden
pubs.publication-statusPublisheden
dc.identifier.orcidVarghese, M. [0000-0002-1100-3595]en
Appears in Collections:Pure Mathematics publications

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.