Please use this identifier to cite or link to this item: https://hdl.handle.net/2440/37795
Type: Thesis
Title: Amphibian skin peptides which inhibit nNOS : structure and binding studies using heteronuclear NMR
Author: Apponyi, Margit Anneliese
Issue Date: 2006
School/Discipline: School of Chemistry and Physics
Abstract: Using 2 - D NMR spectroscopy, the structure of the sex pheromone from Litoria splendida has been determined, in order to elucidate its mode of transport through the aquatic environment. The peptide was found form an α - helical structure, with a central flexible hinge region. The mode of transport through the aquatic environment has been discussed in relation to the structure. Previous work indicated that the Australian amphibian host defence skin peptides that inhibit neuronal nitric oxide synthase ( nNOS ) were likely to act indirectly on the enzyme, by binding to the co - enzyme of nNOS, calmodulin. [superscript 15] N labelled calmodulin was expressed and purified via a bacterial protein expression system and a series of 2 - D NMR [superscript 15] N - HSQC titrations was performed with Australian amphibian host defence skin peptides. in order to determine whether these peptides bind to calmodulin. The three peptides tested were found to bind, and with differing strengths of interaction. One of these was selected for further study. [superscript 15] N and [superscript 13] C doubly labelled calmodulin was then prepared in order to study the complex between this protein and the selected peptide, caerin 1.8, an Australian amphibian skin peptide isolated from Litoria chloris. A series of 3 - D NMR spectra has been recorded on this complex. The backbone atom resonances have been assigned for free calmodulin and for the calmodulin - peptide complex, using a combination of main chain directed and sequential assignment strategies. By analysing the changes in chemical shift that occur upon binding the peptide, it was determined that the mode of binding involves a stronger interaction with the C - terminal domain than the N - terminal domain.
Advisor: Bowie, John Hamilton
Dissertation Note: Thesis (Ph.D.)--School of Chemistry and Physics, 2006.
Subject: Peptides Analysis
Peptides Therapeutic use
Amphibians Australia Molecular aspects
Provenance: This electronic version is made publicly available by the University of Adelaide in accordance with its open access policy for student theses. Copyright in this thesis remains with the author. This thesis may incorporate third party material which has been used by the author pursuant to Fair Dealing exceptions. If you are the owner of any included third party copyright material you wish to be removed from this electronic version, please complete the take down form located at: http://www.adelaide.edu.au/legals
Appears in Collections:Research Theses

Files in This Item:
File Description SizeFormat 
01front.pdf107.1 kBAdobe PDFView/Open
02whole.pdf3.52 MBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.