Please use this identifier to cite or link to this item:
Type: Thesis
Title: Identification of genes involved in leukaemia and differentiation induced by activated mutants of the GM-CSF receptor β subunit.
Author: Reynolds, Brenton James
Issue Date: 2005
School/Discipline: School of Medicine
Abstract: Interleukin (IL)-3, IL-5 and granulocyte-macrophage-colony-stimulating factor (GM-CSF) are cytokines that affect the growth, survival and differentiation of many cells within the haematopoietic system. The functions of these factors are mediated by membrane bound receptor complexes that are composed of specific ligand binding subunits (α)and a common signal transducing subunit(hβc). Constitutively activated mutants of hβc have been previously identified that are able to confer factor-independent signalling in a number of haematopoietic cell lines (including FDC-P1 and FDB-1). These activated mutants fall into two classes defined by the location of the mutation and their biochemical and leukaemogenic properties. In particular, the transmembrane mutant, V449E, causes an acute myeloid leukaemia in vivo, whereas the extracellular mutants (FI∆ or I374N) cause chronic myeloproliferative disorders. The work described in this thesis used the activated hβc mutants to uncover novel transcriptional events induced by the GM-CSF/IL-3/IL-5 receptor complex and to define pathways associated with proliferation and differentiation. Large-scale gene expression profiling techniques were used to investigate the genes involved in these biological processes in the murine myelomonocytic cell line FDC-P1, and the bi-potent FDB-1 myeloid cell line, which are responsive to IL-3 and GM-CSF. Membrane arrays were used to identify differences in gene expression between I374N and V449E expressing FDC-P1 cells. This technique revealed that the gene Ptpmt1 was differentially expressed between V449E and I374N, which was subsequently confirmed by Northern blotting. This finding suggested that the phosphatase encoded by Ptpmt1 may be involved in the different outcomes induced by these two hβc mutants. Northern analysis also revealed Ptpmt1, Nab1 and Ddx26b to be regulated in response to human GM-CSF in FDC-P1 cells expressing human GM CSFα and hβc. A large-scale cDNA microarray experiment was also performed to identify genes that are selectively expressed during differentiation of FI∆ expressing FDB-1 cells, compared to proliferating V449E expressing FDB-1 cells over 24 hours. A comprehensive analysis approach was adopted to examine the microarray data and identify differentially expressed genes. Among the genes displaying differential expression were Btg1, S100a9, Cd24, and Ltf found to be differentiation-associated and Bnip3, Cd34, Myc, Nucleophosmin, and Nucleostemin found to be proliferation-associated. Hipk1, Klf6, Sp100, and Sfrs3 were also identified as potential transcriptional regulators during growth and differentiation. Northern analysis was used to confirm differences in expression for these 13 genes between FI∆ and V449E expressing FDB-1 cells. Eleven of the 13 genes examined were confirmed to be differentially expressed between FI∆ and V449E expressing FDB-1 cells over 24 hours. Furthermore, six genes (Btg1, Hipk1, Cd24, Cd34, Klf6 and Nucleostemin) examined over 72 hours revealed differences in gene expression at early (6-12 hours) and late (48-72 hours) time points. Cell surface expression of CD24 protein was also shown to be induced upon FI∆ expression or GM-CSF induced differentiation of FDB-1 cells, consistent with elevated levels of Cd24 mRNA in FI∆ cells over time. Based on their confirmed gene expression differences seen on the microarrays and Northern analysis, four genes (Btg1, Cd24, Klf6 and Nucleostemin) were selected for over-expression analysis in FDC-P1 or FDB-1 cells, in order to gain insights into the function of these genes. Optimisation of the retroviral infection process was performed so that the role of these genes in proliferation and differentiation could be investigated in the FDB-1 model. Such preliminary functional experiments in FDB-1 cells will enable prioritisation of the genes for further analysis of their function in primary cells. Thus, the work in this thesis describes the first use of microarrays to identify gene expression differences between hβc mutants with differential activities affecting myeloid growth and differentiation.
Advisor: D'Andrea, Richard James
Gonda, T. J.
Dissertation Note: Thesis (PhD)-- School of Medicine, 2005
Subject: Leukemia--Genetic aspects
Provenance: Copyright material removed from digital thesis. See print copy in University of Adelaide Library for full text.
Appears in Collections:Research Theses

Files in This Item:
File SizeFormat 
Reynolds2005_PhD.pdf5.17 MBAdobe PDFView/Open

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.