Please use this identifier to cite or link to this item:
Scopus Web of Science® Altmetric
Type: Journal article
Title: Comparison between gradient-dependent hydraulic conductivities of roots using the root pressure probe: the role of pressure propagations and implications for the relative roles of parallel radial pathways
Author: Bramley, H.
Turner, N.
Turner, D.
Tyerman, S.
Citation: Plant Cell and Environment, 2007; 30(7):861-874
Publisher: Blackwell Publishing Ltd
Issue Date: 2007
ISSN: 0140-7791
Statement of
Helen Bramley, Neil C. Turner, David W. Turner and Stephen D. Tyerman
Abstract: Hydrostatic pressure relaxations with the root pressure probe are commonly used for measuring the hydraulic conductivity (Lpr) of roots. We compared the Lpr of roots from species with different root hydraulic properties (Lupinus angustifolius L. ‘Merrit’, Lupinus luteus L. ‘Wodjil’, Triticum aestivum L. ‘Kulin’ and Zea mays L. ‘Pacific DK 477’) using pressure relaxations, a pressure clamp and osmotic gradients to induce water flow across the root. Only the pressure clamp measures water flow under steady-state conditions. Lpr determined by pressure relaxations was two- to threefold greater than Lpr from pressure clamps and was independent of the direction of water flow. Lpr (pressure clamp) was two- to fourfold higher than for Lpr (osmotic) for all species except Triticum aestivum where Lpr (pressure clamp) and Lpr (osmotic) were not significantly different. A novel technique was developed to measure the propagation of pressure through roots to investigate the cause of the differences in Lpr. Root segments were connected between two pressure probes so that when root pressure (Pr) was manipulated by one probe, the other probe recorded changes in Pr. Pressure relaxations did not induce the expected kinetics in pressure in the probe at the other end of the root when axial hydraulic conductance, and probe and root capacitances were accounted for. An electric circuit model of the root was constructed that included an additional capacitance in the root loaded by a series of resistances. This accounted for the double exponential kinetics for intact roots in pressure relaxation experiments as well as the reduced response observed with the double probe experiments. Although there were potential errors with all the techniques, we considered that the measurement of Lpr using the pressure clamp was the most unambiguous for small pressure changes, and provided that sufficient time was allowed for pressure propagation through the root. The differences in Lpr from different methods of measurement have implications for the models describing water transport through roots and the potential role of aquaporins.
Keywords: Lupinus; Triticum; Zea mays; Plant Roots; Pressure; Models, Biological; Biomechanical Phenomena
Description: The definitive version is available at
RMID: 0020070929
DOI: 10.1111/j.1365-3040.2007.01678.x
Appears in Collections:Agriculture, Food and Wine publications

Files in This Item:
There are no files associated with this item.

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.