Please use this identifier to cite or link to this item: https://hdl.handle.net/2440/46415
Citations
Scopus Web of Science® Altmetric
?
?
Type: Journal article
Title: Valve design for extracting response functions from hydraulic systems using pseudorandom binary signals
Author: Lee, P.
Vitkovsky, J.
Lambert, M.
Simpson, A.
Citation: Journal of Hydraulic Engineering, 2008; 134(6):858-864
Publisher: ASCE-Amer Soc Civil Engineers
Issue Date: 2008
ISSN: 0733-9429
1943-7900
Statement of
Responsibility: 
Pedro J. Lee; John P. Vítkovský; Martin F. Lambert; and Angus R. Simpson
Abstract: The analysis of the dynamic response of a pressurized water pipeline system is important for the design and also the integrity monitoring of these systems. An efficient method for summarizing the behavior of a pipeline system is through the determination of their system response functions. These functions can be extracted by injecting a pressure signal with a wide bandwidth that persists over the length of a pipeline system. Unlike electrical and mechanical systems, generating such signals in pressurized water systems is difficult. Valves capable of generating a signal against the system back-pressure often lack the necessary maneuverability to ensure the signal is sharp and hence with high-frequency content and the generated transient is often large in amplitude, risking damage to the system. A method for generating a small amplitude transient signal with a wide band of frequencies is desirable. This paper presents the design for a side discharge valve for generating a pseudorandom binary sequence of pressure changes that are of a small magnitude in relation to the steady state head of the pipeline. The pseudorandom pressure sequence is used to provide an estimate of the system response function. The continuous form of the signal allows the amplitude of each individual pulse within the signal to be small while maintaining the same signal bandwidth. The valve has been tested experimentally and was found to provide a good match with the theoretical response of the pipeline. The method provides a practical alternative to frequency sweeping using sinusoidal signals or sharp valve closures for the extraction of the response functions. Once determined, the system response function can be utilized to detect system faults such as leaks and blockages.
Keywords: Pipes
Pressure measurement
Transfer functions
Transient flow
Water pipelines
Rights: © 2008 ASCE
DOI: 10.1061/(ASCE)0733-9429(2008)134:6(858)
Published version: http://dx.doi.org/10.1061/(asce)0733-9429(2008)134:6(858)
Appears in Collections:Aurora harvest
Civil and Environmental Engineering publications
Environment Institute publications

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.