Please use this identifier to cite or link to this item:
Scopus Web of ScienceĀ® Altmetric
Type: Journal article
Title: Expression of taste molecules in the upper gastrointestinal tract in humans with and without type 2 diabetes
Author: Young, R.
Sutherland, K.
Pezos, N.
Brierley, S.
Horowitz, M.
Rayner, C.
Blackshaw, L.
Citation: Gut, 2009; 2008(3):337-346
Publisher: British Med Journal Publ Group
Issue Date: 2009
ISSN: 0017-5749
Statement of
R. L. Young, K. Sutherland, N. Pezos, S. M. Brierley, M. Horowitz, C. K. Rayner, L. A. Blackshaw
Abstract: <h4>Objective</h4>Nutrient feedback from the small intestine modulates upper gastrointestinal function and energy intake; however, the molecular mechanism of nutrient detection is unknown. In the tongue, sugars are detected via taste T1R2 and T1R3 receptors and signalled via the taste G-protein alpha-gustducin (G alpha(gust)) and the transient receptor potential ion channel, TRPM5. These taste molecules are also present in the rodent small intestine, and may regulate gastrointestinal function.<h4>Subjects and methods</h4>Absolute transcript levels for T1R2, T1R3, G alpha(gust) and TRPM5 were quantified in gastrointestinal mucosal biopsies from subjects with and without type 2 diabetes; immunohistochemistry was used to locate G alpha(gust). Effects of luminal glucose on jejunal expression of taste molecules were also quantified in mice.<h4>Results</h4>T1R2, T1R3, G alpha(gust) and TRPM5 were preferentially expressed in the proximal small intestine in humans, with immunolabelling for G alpha(gust) localised to solitary cells dispersed throughout the duodenal villous epithelium. Expression of T1R2, T1R3, TRPM5 (all p<0.05) and G alpha(gust) (p<0.001) inversely correlated with blood glucose concentration in type 2 diabetes subjects but, as a group, did not differ from control subjects. Transcript levels of T1R2 were reduced by 84% following jejunal glucose perfusion in mice (p<0.05).<h4>Conclusions</h4>Taste molecules are expressed in nutrient detection regions of the proximal small intestine in humans, consistent with a role in "tasting". This taste molecule expression is decreased in diabetic subjects with elevated blood glucose concentration, and decreased by luminal glucose in mice, indicating that intestinal "taste" signalling is under dynamic metabolic and luminal control.
Keywords: Jejunum
Upper Gastrointestinal Tract
Mice, Inbred C57BL
Diabetes Mellitus, Type 2
Receptors, G-Protein-Coupled
Gene Expression
Middle Aged
DOI: 10.1136/gut.2008.148932
Appears in Collections:Aurora harvest
Molecular and Biomedical Science publications

Files in This Item:
There are no files associated with this item.

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.