Please use this identifier to cite or link to this item:
Scopus Web of ScienceĀ® Altmetric
Type: Conference paper
Title: Locally Linear Embedding for Markerless Human Motion Capture using Multiple Cameras
Author: Tangkuampien, T.
Chin, T.J.
Citation: Proceedings of Digital Image Computing: Techniques and Applications held in Cairns, Queensland, Australia, 2005: p.72
Publisher: IEEE
Publisher Place: Online
Issue Date: 2005
ISBN: 0769524672
Conference Name: Digital Image Computing: Techniques and Applications (2005 : Cairns, Australia)
Statement of
Therdsak Tangkuampien and Tat-Jun Chin
Abstract: We investigate the possibility of applying non-linear manifold learning techniques to aid in markerless human motion capturing. We hypothesize that the set of segmented binary images (in a constrained environment) of a person in all possible poses lie on a low dimensional manifold in the image space. Since it is not feasible to densely sample the manifold by capturing real life images, we propose to learn the manifold by using synthetic images. An accurate 3D mesh of the actor can be used to generate the synthetic 3 dimensional virtual data. A set of poses (a collection of hierarchical joint angles defining the stance of a person at a point in time) ranging the space of possible human motion is used to animate the mesh and the synthetic images are then captured by virtual cameras. We hypothesize that these vectorized synthetic images lie on a low dimensional manifold shared by the pose vectors. We then align the synthetic image and pose pairs to form a common manifold by constraining them to be equivalent. Given a new set of real images of the actor, the system can then project the captured image onto the aligned common manifold and determine the closest synthetic poses to use to linearly generate the output pose. Our experiments exhibit promising results for our method.
RMID: 0020093462
DOI: 10.1109/DICTA.2005.51
Appears in Collections:Computer Science publications

Files in This Item:
There are no files associated with this item.

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.