Please use this identifier to cite or link to this item: http://hdl.handle.net/2440/55534
Citations
Scopus Web of ScienceĀ® Altmetric
?
?
Full metadata record
DC FieldValueLanguage
dc.contributor.authorLim, E.en
dc.contributor.authorSuter, D.en
dc.date.issued2007en
dc.identifier.citation2007 International Conference on Cyberworlds Proceedings, 2007: pp.404-408en
dc.identifier.isbn0769530052en
dc.identifier.isbn9780769530055en
dc.identifier.urihttp://hdl.handle.net/2440/55534-
dc.description.abstractWe proposed using Conditional Random Fields with adaptive data reduction for the classification of 3D point clouds acquired from a Riegl Terrestrial laser scanner. The training and inference of the acquired large outdoor urban data can be time consuming. We approach the problem by computing an adaptive support region for each data point using 3D scale theory. For training and inference of the discriminative Conditional Random Fields, smaller set of data samples that contains relevant information within the support region is selected instead of using all point cloud data. We tested the algorithm on synthetically generated data and urban point clouds data acquired from the laser scanner. The computed support region is also used in feature extraction for urban point clouds data. The results showed improvement in the training and inference rate while maintaining comparable classification accuracy.en
dc.description.statementofresponsibilityE. H. Lim and D. Suteren
dc.description.urihttp://dx.doi.org/10.1109/CW.2007.30en
dc.language.isoenen
dc.publisherIEEEen
dc.subjectClassifications; Conditional Random Fields; LIDAR data; machine learning; scale theoryen
dc.titleConditional random field for 3D point clouds with adaptive data reduction.en
dc.typeConference paperen
dc.identifier.rmid0020094107en
dc.contributor.conferenceInternational Conference on Cyberworlds (2007 : Hannover, Germany)en
dc.identifier.doi10.1109/CW.2007.24en
dc.publisher.placeOnlineen
dc.identifier.pubid36538-
pubs.library.collectionComputer Science publicationsen
pubs.verification-statusVerifieden
pubs.publication-statusPublisheden
dc.identifier.orcidSuter, D. [0000-0001-6306-3023]en
Appears in Collections:Computer Science publications

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.