Please use this identifier to cite or link to this item: http://hdl.handle.net/2440/55687
Citations
Scopus Web of Science® Altmetric
?
?
Full metadata record
DC FieldValueLanguage
dc.contributor.authorSarkar, S.en
dc.contributor.authorZhang, H.en
dc.contributor.authorLevy, M.en
dc.contributor.authorHart, S.en
dc.contributor.authorHailes, H.en
dc.contributor.authorTabor, A.en
dc.contributor.authorShamlou, P.en
dc.date.issued2003en
dc.identifier.citationBiotechnology and Applied Biochemistry, 2003; 38(1):95-102en
dc.identifier.issn0885-4513en
dc.identifier.issn1470-8744en
dc.identifier.urihttp://hdl.handle.net/2440/55687-
dc.description.abstractConcerns with insertional mutagenesis for retrovirus and immunogenicity for adenovirus have motivated research into development of non-viral vectors that can safely deliver desired gene constructs to target cells in tissues and organs. Many non-viral vectors suffer from unacceptably poor in vivo cell transfection and low transgene expression. Evidence suggests that cell transfection is linked to particle size - vector particles below about 200 nm are considered desirable. Experimental measurements indicate, however, that vector particles are susceptible to significant aggregation under most conditions of pH and ionic strength, including physiological conditions, although there are currently no means of predicting the kinetics of aggregation. The present paper addresses this challenge by presenting a mathematical framework based on the Monte Carlo simulation techniques for modelling the dynamics of aggregation. The approach is used to simulate the evolution of particle-size distribution for an integrin-targeting lipid-peptide-DNA vector system in buffers of different pH and ionic strength. The simulations required two input parameters, including the initial-size distribution of the particles and a fitting parameter (alpha). Comparison of simulations with experimental data showed that alpha was closely related to the zeta potential of the particles in the buffer medium, making simulations fully predictive. The modelling approach may be used in other vector systems.en
dc.description.statementofresponsibilitySupti Sarkar, Hu Zhang, Susana M. Levy, Stephen L. Hart, Helen C. Hailes, Alethea B. Tabor and Parviz Ayazi Shamlouen
dc.language.isoenen
dc.publisherPortland Pressen
dc.subjectaggregation dynamics; formulation; lipid–peptide–DNA vector particles; Monte Carlo simulation; zeta potential.en
dc.titlePrediction of size distribution of lipid -peptide -DNA vector particles using Monte Carlo simulation techniquesen
dc.typeJournal articleen
dc.identifier.rmid0020093574en
dc.identifier.doi10.1042/BA20030073en
dc.identifier.pubid36937-
pubs.library.collectionChemical Engineering publicationsen
pubs.verification-statusVerifieden
pubs.publication-statusPublisheden
dc.identifier.orcidZhang, H. [0000-0003-4178-6401]en
Appears in Collections:Chemical Engineering publications

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.