Please use this identifier to cite or link to this item: https://hdl.handle.net/2440/57200
Citations
Scopus Web of Science® Altmetric
?
?
Type: Journal article
Title: Correlations and reconstruction models for the 2500-1500 Ma evolution of the Mawson Continent
Author: Payne, J.
Hand, M.
Hatch, K.
Reid, A.
Evans, D.
Citation: Geological Society Special Publication, 2009; 323(1):319-355
Publisher: Geological Society Publishing House
Issue Date: 2009
ISSN: 0305-8719
2041-4927
Statement of
Responsibility: 
Justin L. Payne, Martin Hand, Karin M. Barovich, Anthony Reid and David A. D. Evans
Abstract: Continental lithosphere formed and reworked during the Palaeoproterozoic era is a major component of pre-1070 Ma Australia and the East Antarctic Shield. Within this lithosphere, the Mawson Continent encompasses the Gawler–Adélie Craton in southern Australia and Antarctica, and crust of the Miller Range, Transantarctic Mountains, which are interpreted to have assembled during c. 1730–1690 Ma tectonism of the Kimban–Nimrod–Strangways orogenies. Recent geochronology has strengthened correlations between the Mawson Continent and Shackleton Range (Antarctica), but the potential for Meso- to Neoproterozoic rifting and/or accretion events prevent any confident extension of the Mawson Continent to include the Shackleton Range. Proposed later addition (c. 1600–1550 Ma) of the Coompana Block and its Antarctic extension provides the final component of the Mawson Continent. A new model proposed for the late Archaean to early Mesoproterozoic evolution of the Mawson Continent highlights important timelines in the tectonic evolution of the Australian lithosphere. The Gawler–Adélie Craton and adjacent Curnamona Province are interpreted to share correlatable timelines with the North Australian Craton at c. 2500–2430 Ma, c. 2000 Ma, 1865–1850 Ma, 1730–1690 Ma and 1600–1550 Ma. These common timelines are used to suggest the Gawler–Adélie Craton and North Australian Craton formed a contiguous continental terrain during the entirety of the Palaeoproterozoic. Revised palaeomagnetic constraints for global correlation of proto-Australia highlight an apparently static relationship with northwestern Laurentia during the c. 1730–1590 Ma time period. These data have important implications for many previously proposed reconstruction models and are used as a primary constraint in the configuration of the reconstruction model proposed herein. This palaeomagnetic link strengthens previous correlations between the Wernecke region of northwestern Laurentia and terrains in the eastern margin of proto-Australia.
DOI: 10.1144/SP323.16
Published version: http://dx.doi.org/10.1144/sp323.16
Appears in Collections:Aurora harvest 5
Earth and Environmental Sciences publications
Environment Institute publications

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.