Please use this identifier to cite or link to this item:
Scopus Web of Science® Altmetric
Type: Journal article
Title: A novel method for somatic cell nuclear transfer to mouse embryonic stem cells
Author: Pralong, D.
Mrozik, K.
Occhiodoro, F.
Wijesundara, N.
Sumer, H.
Van Boxtel, A.
Trounson, A.
Verma, P.
Citation: Cloning and Stem Cells, 2005; 7(4):265-271
Publisher: Mary Ann Liebert, Inc. Publishers
Issue Date: 2005
ISSN: 1536-2302
Statement of
Danièle Pralong, Krzysztof Mrozik, Filomena Occhiodoro, Nishanthi Wijesundara, Huseyin Sumer, Antonius L. Van Boxtel, Alan Trounson and Paul J. Verma
Abstract: Nuclear reprogramming by somatic cell nuclear transfer (SCNT) provides a practical approach for generating autologous pluripotent cells from adult somatic cells. It has been shown that murine somatic cells can also be reprogrammed to a pluripotent-like state by fusion with embryonic stem (ES) cells. Typically, the first step in SCNT involves enucleation of the recipient cell. However, recent evidence suggests that enucleated diploid ES cells may lack reprogramming capabilities. Here we have developed methods whereby larger tetraploid ES cells are first generated by fusion of two mouse ES cell lines transfected with plasmids carrying different antibiotic-resistance cassettes, followed by double antibiotic selection. Tetraploid ES cells grown on tissue culture disks or wells can be efficiently enucleated (up to 99%) using a combination of cytochalasin B treatment and centrifugation, with cytoplasts generated from these cells larger than those obtained from normal diploid ES cells. Also, we show that the enucleation rate is dependent on centrifugation time and cell ploidy. Further, we demonstrate that normal diploid ES cells can be fused to tetraploid ES cells to form heterokaryons, and that selective differential centrifugation conditions can be applied where the tetraploid nucleus is removed while the diploid donor nucleus is retained. This technology opens new avenues for generating autologous, diploid pluripotent cells, and provides a dynamic model for studying nuclear reprogramming in ES cells.
Keywords: Cells, Cultured; Cell Nucleus; Pluripotent Stem Cells; Animals; Mice; Cell Fusion; Genetic Techniques; Cloning, Organism; Diploidy; Polyploidy; Nuclear Transfer Techniques; Embryo, Mammalian
Description: © Mary Ann Liebert
RMID: 0020095945
DOI: 10.1089/clo.2005.7.265
Appears in Collections:Dentistry publications

Files in This Item:
There are no files associated with this item.

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.