Please use this identifier to cite or link to this item: http://hdl.handle.net/2440/58010
Type: Conference paper
Title: The ordered residual kernel for robust motion subspace clustering
Author: Chin, T.J.
Wang, H.
Suter, D.
Citation: Advances in Neural Information Processing Systems 22 / Y. Bengio, D. Schuurmans, J. Lafferty, C. K. I. Williams and A. Culotta (eds.), pp.333-341.
Publisher: NIPS
Publisher Place: online
Issue Date: 2009
ISBN: 9781615679119
Conference Name: Neural Information Processing Systems Conference (2009 : Vancouver, Canada)
Statement of
Responsibility: 
Tat-Jun Chin, Hanzi Wang and David Suter
Abstract: We present a novel and highly effective approach for multi-body motion segmentation. Drawing inspiration from robust statistical model fitting, we estimate putative subspace hypotheses from the data. However, instead of ranking them we encapsulate the hypotheses in a novel Mercer kernel which elicits the potential of two point trajectories to have emerged from the same subspace. The kernel permits the application of well-established statistical learning methods for effective outlier rejection, automatic recovery of the number of motions and accurate segmentation of the point trajectories. The method operates well under severe outliers arising from spurious trajectories or mistracks. Detailed experiments on a recent benchmark dataset (Hopkins 155) show that our method is superior to other stateof- the-art approaches in terms of recovering the number of motions, segmentation accuracy, robustness against gross outliers and computational efficiency.
Rights: Copyright 2009 NIPS Foundation — All Rights Reserved.
RMID: 0020096045
Description (link): http://books.nips.cc/nips22.html
Appears in Collections:Computer Science publications

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.