Please use this identifier to cite or link to this item: https://hdl.handle.net/2440/58212
Citations
Scopus Web of Science® Altmetric
?
?
Full metadata record
DC FieldValueLanguage
dc.contributor.authorWu, O.en
dc.contributor.authorZuo, H.en
dc.contributor.authorZhu, M.en
dc.contributor.authorHu, W.en
dc.contributor.authorGao, J.en
dc.contributor.authorWang, H.en
dc.date.issued2009en
dc.identifier.citationProceedings of the 2009 IEEE/WIC/ACM, 2009: pp.165-172en
dc.identifier.isbn9780769538013en
dc.identifier.urihttp://hdl.handle.net/2440/58212-
dc.description.abstractFiltering feature selection method (filtering method, for short) is a well-known feature selection strategy in pattern recognition and data mining. Filtering method outperforms other feature selection methods in many cases when the dimension of features is large. There are so many filtering methods proposed in previous work leading to the “selection trouble” that how to select an appropriate filtering method for a given text data set. Since to find the best filtering method is usually intractable in real application, this paper takes an alternative path. We propose a feature selection framework that fuses the results obtained by different filtering methods. In fact, deriving a better rank list from different rank lists, known as rank aggregation, is a hot topic studied in many disciplines. Based on the proposed framework and Markov chains rank aggregation techniques, in this paper, we present two new feature selection methods: FR-MC1 and FR-MC4. We also introduce a perturbation algorithm to alleviate the drawbacks of Markov chains rank aggregation techniques. Empirical evaluation on two public text data sets shows that the two new feature selection methods achieve better or comparable results than classical filtering methods, which also demonstrate the effectiveness of our framework.en
dc.description.statementofresponsibilityOu Wu, Haiqiang Zuo, Mingliang Zhu, Weiming Hu, Jun Gao and Hanzi Wangen
dc.language.isoenen
dc.publisherIEEEen
dc.rights© 2009 IEEEen
dc.titleRank aggregation based text feature selectionen
dc.typeConference paperen
dc.contributor.conferenceIEEE/WIC/ACM International Conference on Intelligent Agent Technology (2009 : Italy)en
dc.identifier.doi10.1109/WI-IAT.2009.32en
dc.publisher.placeUSAen
pubs.publication-statusPublisheden
Appears in Collections:Aurora harvest 5
Computer Science publications

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.