Please use this identifier to cite or link to this item: https://hdl.handle.net/2440/58216
Citations
Scopus Web of Science® Altmetric
?
?
Full metadata record
DC FieldValueLanguage
dc.contributor.authorOlsson, C.-
dc.contributor.authorEriksson, A.-
dc.contributor.authorKahl, F.-
dc.date.issued2007-
dc.identifier.citationInternational Conference on Computer Vision and Pattern Recognition, 2007. CVPR 2007: pp. 1-8-
dc.identifier.isbn1424411807-
dc.identifier.urihttp://hdl.handle.net/2440/58216-
dc.description.abstractIn this paper we introduce two new methods for solving binary quadratic problems. While spectral relaxation methods have been the workhorse subroutine for a wide variety of computer vision problems - segmentation, clustering, image restoration to name a few - it has recently been challenged by semidefinite programming (SDP) relaxations. In fact, it can be shown that SDP relaxations produce better lower bounds than spectral relaxations on binary problems with a quadratic objective function. On the other hand, the computational complexity for SDP increases rapidly as the number of decision variables grows making them inapplicable to large scale problems. Our methods combine the merits of both spectral and SDP relaxations -better (lower) bounds than traditional spectral methods and considerably faster execution times than SDP. The first method is based on spectral subgradients and can be applied to large scale SDPs with binary decision variables and the second one is based on the trust region problem. Both algorithms have been applied to several large scale vision problems with good performance.-
dc.description.statementofresponsibilityCarl Olsson, Anders P. Eriksson, Fredrik Kahl-
dc.language.isoen-
dc.publisherIEEE-
dc.rights©2007 IEEE-
dc.source.urihttp://dx.doi.org/10.1109/cvpr.2007.383202-
dc.titleSolving large scale binary quadratic problems: spectral methods vs. semidefinite programming-
dc.typeConference paper-
dc.contributor.conferenceInternational Conference on Computer Vision and Pattern Recognition (2007 : Minneapolis, Minnesota)-
dc.identifier.doi10.1109/CVPR.2007.383202-
dc.publisher.placeUnited States-
pubs.publication-statusPublished-
Appears in Collections:Aurora harvest
Computer Science publications

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.