Please use this identifier to cite or link to this item: https://hdl.handle.net/2440/58389
Full metadata record
DC FieldValueLanguage
dc.contributor.authorShen, C.-
dc.contributor.authorKim, J.-
dc.contributor.authorWang, L.-
dc.contributor.authorVan Den Hengel, A.-
dc.date.issued2009-
dc.identifier.citationProceedings of NIPS 2009; pp.1651-1660-
dc.identifier.isbn9781615679119-
dc.identifier.urihttp://hdl.handle.net/2440/58389-
dc.description.abstractThe learning of appropriate distance metrics is a critical problem in image classification and retrieval. In this work, we propose a boosting-based technique, termed BOOSTMETRIC, for learning a Mahalanobis distance metric. One of the primary difficulties in learning such a metric is to ensure that the Mahalanobis matrix remains positive semidefinite. Semidefinite programming is sometimes used to enforce this constraint, but does not scale well. BOOSTMETRIC is instead based on a key observation that any positive semidefinite matrix can be decomposed into a linear positive combination of trace-one rank-one matrices. BOOSTMETRIC thus uses rank-one positive semidefinite matrices as weak learners within an efficient and scalable boosting-based learning process. The resulting method is easy to implement, does not require tuning, and can accommodate various types of constraints. Experiments on various datasets show that the proposed algorithm compares favorably to those state-of-the-art methods in terms of classification accuracy and running time.-
dc.description.statementofresponsibilityChunhua Shen, Junae Kim, Lei Wang, Anton van den Hengel-
dc.description.urihttp://nips.cc/Conferences/2009/-
dc.language.isoen-
dc.publisherNIPS-
dc.rightsCopyright status unknown-
dc.source.urihttp://books.nips.cc/papers/files/nips22/NIPS2009_0629.pdf-
dc.titlePositive Semidefinite Metric Learning with Boosting-
dc.typeConference paper-
dc.contributor.conferenceAnnual Conference on Neural Information Processing Systems (23rd : 2009 : Vancouver, Canada)-
dc.publisher.placeonline-
pubs.publication-statusPublished-
dc.identifier.orcidShen, C. [0000-0002-8648-8718]-
dc.identifier.orcidVan Den Hengel, A. [0000-0003-3027-8364]-
Appears in Collections:Aurora harvest
Computer Science publications

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.