Please use this identifier to cite or link to this item:
Scopus Web of Science® Altmetric
Type: Journal article
Title: Effects of multiple stenoses and post-stenotic dilatation on non-Newtonian blood flow in a small arteries
Author: Pincombe, B.
Mazumdar, J.
Hamilton-Craig, Ian
Citation: Medical and Biological Engineering and Computing, 1999; 37(5):595-599
Publisher: Springer-Verlag
Issue Date: 1999
ISSN: 0140-0118
Statement of
B. Pincombe, J. Mazumdar and I. Hamilton-Craig
Abstract: Fully-developed one-dimensional Casson flow through a single vessel of varying radius is proposed as a model of low Reynolds number blood flow in small stenosed coronary arteries. A formula for the resistance-to-flow ratio is derived, and results for yield stresses of τ0=0, 0.005 and 0.01 Nm-2, viscosities of μ=3.45×10−3, 4.00×10−3 and 4.55×10−3 Pa·s and fluxes of 2.73×10−6, ×10−5 and ×10−4 m3s−1 are determined for a segment of 0.45 mm radius and 45 mm length, with 15 mm abnormalities at each end where the radius varies by up to ±0.225 mm. When τ0=0.005 Nm-2, μ=4×10−3 Pa·s and Q=1, the numerical values of the resistance-to-flow ratio vary from[`(l)] = 0.525=0525, when the maximum radii of the two abnormal segments are both 0.675 mm, to[`(l)] = 3.06=306, when the minimum radii are both 0.225 mm. The resistance-to-flow ratio moves closer to unity as yield stress increases or as blood viscosity or flux decreases, and the magnitude of these alterations is greatest for yield stress and least for flux.
Keywords: Casson fluid ; Stenoses ; Yield stress ; Viscosity ; Flux
Rights: © 1999 Springer, Part of Springer Science+Business Media
DOI: 10.1007/BF02513353
Appears in Collections:Applied Mathematics publications

Files in This Item:
There are no files associated with this item.

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.