Please use this identifier to cite or link to this item:
Scopus Web of ScienceĀ® Altmetric
Type: Journal article
Title: Damage and recovery of the bone marrow microenvironment induced by cancer chemotherapy - potential regulatory role of chemokine CXCL12/receptor CXCR4 signalling
Author: Georgiou, K.
Foster, B.
Xian, C.
Citation: Current Molecular Medicine, 2010; 10(5):440-453
Publisher: Bentham Science Publishers Ltd.
Issue Date: 2010
ISSN: 1566-5240
Statement of
K. R. Georgiou, B. K. Foster and C. J. Xian
Abstract: The bone marrow microenvironment houses haematopoietic stem cells (HSC), mesenchymal stem cells (MSC) and their progeny, supports haematopoiesis, osteogenesis, osteoclastogenesis, and adipogenesis. It plays a key role in maintaining homeostatic production of erythroid, myeloid or lymphoid cells, appropriate bone mass and bone health throughout life. Through cell-cell adhesion and chemotactic axes, a reciprocal inter-dependent relationship exists between these two cell lineages. Following chemotherapy-induced myelosuppression observed in cancer patients, HSCs are induced to enter into the cell cycle in order to re-establish the damaged microenvironment. These cells not only have the capacity to mobilize to the peripheral blood, but the ability to repopulate the marrow cavity as required. However, depending on the dosage and length of chemotherapy treatment, complications in bone and bone marrow recovery occur. This may manifest as marrow haematopoietic depletion, high marrow fat content, reduced bone formation and aggravated osteoclastic bone resorption. Although the molecular and cellular mechanisms governing injured states of the marrow microenvironment are yet to be fully elucidated, many reports have demonstrated the CXCL12/CXCR4 axis plays an important role in regulating the two cell lineages. Their interaction maintains bone marrow homeostasis and orchestrates its regeneration following chemotherapy. This review explores movement of MSC and HSC, haematopoiesis, commitment of osteoblasts, osteoclasts, and adipocytes, as well as the major signalling pathways that regulate these cellular processes under chemotherapy-treated conditions. This review also discusses molecular targets that are being used clinically or are currently under investigation for preserving the bone marrow microenvironment during or enhancing recovery after chemotherapy.
Keywords: Bone Marrow
Receptors, CXCR4
Bone Remodeling
Signal Transduction
Chemokine CXCL12
Rights: Copyright of Current Molecular Medicine is the property of Bentham Science Publishers
DOI: 10.2174/156652410791608243
Published version:
Appears in Collections:Aurora harvest 5
Molecular and Biomedical Science publications

Files in This Item:
There are no files associated with this item.

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.