Please use this identifier to cite or link to this item:
Scopus Web of Science® Altmetric
Type: Journal article
Title: Simulated physiological oocyte maturation (SPOM): a novel in vitro maturation system that substantially improves embryo yield and pregnancy outcomes
Author: Albuz, F.
Sasseville, M.
Lane, M.
Armstrong, D.
Thompson, J.
Gilchrist, R.
Citation: Human Reproduction, 2010; 25(12):2999-3011
Publisher: Oxford Univ Press
Issue Date: 2010
ISSN: 0268-1161
Statement of
F.K. Albuz, M. Sasseville, M. Lane, D.T. Armstrong, J.G. Thompson and R.B. Gilchrist
Abstract: Background: Oocyte in vitro maturation (IVM) reduces the need for gonadotrophin-induced ovarian hyperstimulation and its associated health risks but the unacceptably low conception/pregnancy rates have limited its clinical uptake.We report the development of a novel in vitro simulated physiological oocyte maturation (SPOM) system. Methods and Results: Bovine or mouse cumulus–oocyte complexes (COCs) were treated with cAMP modulators for the first 1–2 h in vitro (pre-IVM), increasing COC cAMP levels ~100-fold. To maintain oocyte cAMP levels and prevent precocious oocyte maturation, COCs were treated during IVM with an oocyte-specific phosphodiesterase inhibitor and simultaneously induced to mature with FSH. Using SPOM, the pre-IVM and IVM treatments synergized to increase bovine COC gap-junctional communication and slow meiotic progression (both P , 0.05 versus control), extending the normal IVM interval by 6 h in bovine and 4 h in mouse. FSH was required to complete maturation and this required epidermal growth factor signalling. These effects on COC had profound consequences for oocyte developmental potential. In serum-free conditions, SPOM increased bovine blastocyst yield (69 versus 27%) and improved blastocyst quality (184 versus 132 blastomeres; both P , 0.05 versus standard IVM). In mice, SPOM increased (all P , 0.05) blastocyst rate (86 versus 55%; SPOM versus control), implantation rate (53 versus 28%), fetal yield (26 versus 8%) and fetal weight (0.9 versus 0.5 g) to levels matching those of in vivo matured oocytes (conventional IVF). Conclusions: SPOM is a new approach to IVM, mimicing some characteristics of oocyte maturation in vivo and substantially improving oocyte developmental outcomes. Adaption of SPOM for clinical application should have significant implications for infertility management and bring important benefits to patients.
Keywords: oocyte maturation
in vitro maturation
cyclic AMP
Rights: © The Author 2010. Published by Oxford University Press on behalf of the European Society of Human Reproduction and Embryology. All rights reserved.
DOI: 10.1093/humrep/deq246
Grant ID:
Appears in Collections:Aurora harvest 5
Obstetrics and Gynaecology publications

Files in This Item:
There are no files associated with this item.

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.