Please use this identifier to cite or link to this item: http://hdl.handle.net/2440/66426
Citations
Scopus Web of ScienceĀ® Altmetric
?
?
Type: Journal article
Title: Effectiveness of biological surrogates for predicting patterns of marine biodiversity: A global meta-analysis
Author: Mellin, C.
Delean, J.
Caley, M.
Edgar, G.
Meekan, M.
Pitcher, R.
Przeslawski, R.
Williams, A.
Bradshaw, C.
Citation: PLoS One, 2011; 6(6):e20141-1-e20141-11
Publisher: Public Library of Science
Issue Date: 2011
ISSN: 1932-6203
1932-6203
Statement of
Responsibility: 
Camille Mellin, Steve Delean, Julian Caley, Graham Edgar, Mark Meekan, Roland Pitcher, Rachel Przeslawski, Alan Williams and Corey Bradshaw
Abstract: The use of biological surrogates as proxies for biodiversity patterns is gaining popularity, particularly in marine systems where field surveys can be expensive and species richness high. Yet, uncertainty regarding their applicability remains because of inconsistency of definitions, a lack of standard methods for estimating effectiveness, and variable spatial scales considered. We present a Bayesian meta-analysis of the effectiveness of biological surrogates in marine ecosystems. Surrogate effectiveness was defined both as the proportion of surrogacy tests where predictions based on surrogates were better than random (i.e., low probability of making a Type I error; P) and as the predictability of targets using surrogates (R2). A total of 264 published surrogacy tests combined with prior probabilities elicited from eight international experts demonstrated that the habitat, spatial scale, type of surrogate and statistical method used all influenced surrogate effectiveness, at least according to either P or R2. The type of surrogate used (higher-taxa, cross-taxa or subset taxa) was the best predictor of P, with the higher-taxa surrogates outperforming all others. The marine habitat was the best predictor of R2, with particularly low predictability in tropical reefs. Surrogate effectiveness was greatest for higher-taxa surrogates at a ,10-km spatial scale, in low-complexity marine habitats such as soft bottoms, and using multivariate-based methods. Comparisons with terrestrial studies in terms of the methods used to study surrogates revealed that marine applications still ignore some problems with several widely used statistical approaches to surrogacy. Our study provides a benchmark for the reliable use of biological surrogates in marine ecosystems, and highlights directions for future development of biological surrogates in predicting biodiversity.
Keywords: Biological Markers; Bayes Theorem; Biodiversity; Seawater; Models, Biological; Internationality; Aquatic Organisms
Rights: Copyright 2011 Mellin et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
RMID: 0020110266
DOI: 10.1371/journal.pone.0020141
Appears in Collections:Earth and Environmental Sciences publications
Environment Institute Leaders publications
Environment Institute publications

Files in This Item:
File Description SizeFormat 
hdl_66426.pdfPublished version968.89 kBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.