Please use this identifier to cite or link to this item:
Scopus Web of Science® Altmetric
Type: Journal article
Title: Metabolic responses to high-fat diets rich in n-3 or n-6 long-chain polyunsaturated fatty acids in mice selected for either high body weight or leanness explain different health outcomes
Author: Nurernberg, K.
Breier, B.
Jayasinghe, S.
Bergmann, H.
Thompson, N.
Nuernberg, G.
Dannenberger, D.
Schneider, F.
Renne, U.
Langhammer, M.
Huber, K.
Citation: Nutrition and Metabolism, 2011; 8(1):56-1-56-13
Publisher: BioMed Central Ltd.
Issue Date: 2011
ISSN: 1743-7075
Statement of
Karin Nuernberg, Bernhard H Breier, Shakeela N Jayasinghe, Hannes Bergmann, Nichola Thompson, Gerd Nuernberg, Dirk Dannenberger, Falk Schneider, Ulla Renne, Martina Langhammer and Korinna Huber
Abstract: Background: Increasing evidence suggests that diets high in polyunsaturated fatty acids (PUFA) confer health benefits by improving insulin sensitivity and lipid metabolism in liver, muscle and adipose tissue. Methods: The present study investigates metabolic responses in two different lines of mice either selected for high body weight (DU6) leading to rapid obesity development, or selected for high treadmill performance (DUhTP) leading to a lean phenotype. At 29 days of age the mice were fed standard chow (7.2% fat, 25.7% protein), or a high-fat diet rich in n-3 PUFA (n-3 HFD, 27.7% fat, 19% protein) or a high-fat diet rich in n-6 PUFA (n-6 HFD, 27.7% fat, 18.6% protein) for 8 weeks. The aim of the study was to determine the effect of these PUFA-rich high-fat diets on the fatty acid profile and on the protein expression of key components of insulin signalling pathways. Results: Plasma concentrations of leptin and insulin were higher in DU6 in comparison with DUhTP mice. The high-fat diets stimulated a strong increase in leptin levels and body fat only in DU6 mice. Muscle and liver fatty acid composition were clearly changed by dietary lipid composition. In both lines of mice n-3 HFD feeding significantly reduced the hepatic insulin receptor β protein concentration which may explain decreased insulin action in liver. In contrast, protein kinase C ζ expression increased strongly in abdominal fat of n-3 HFD fed DUhTP mice, indicating enhanced insulin sensitivity in adipose tissue. Conclusions: A diet high in n-3 PUFA may facilitate a shift from fuel deposition in liver to fuel storage as fat in adipose tissue in mice. Tissue specific changes in insulin sensitivity may describe, at least in part, the health improving properties of dietary n-3 PUFA. However, important genotype-diet interactions may explain why such diets have little effect in some population groups.
Keywords: polyunsaturated fatty acids
high fat diet
metabolic response
selection line
Description: Extent: 13p.
Rights: © 2011 Nuernberg et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
DOI: 10.1186/1743-7075-8-56
Appears in Collections:Aurora harvest 5
Physiology publications

Files in This Item:
File Description SizeFormat 
hdl_68764.pdfPublished version422.07 kBAdobe PDFView/Open

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.