Please use this identifier to cite or link to this item:
Scopus Web of ScienceĀ® Altmetric
Full metadata record
DC FieldValueLanguage
dc.contributor.authorPaisitkriangkrai, S.-
dc.contributor.authorShen, C.-
dc.contributor.authorVan Den Hengel, A.-
dc.identifier.citationProceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR 2012), held in Rhode Island, USA, 16-21 June 2012: pp. 2128-2135-
dc.description.abstractWe present a novel formulation of fully corrective boosting for multi-class classification problems with the awareness of sharing features. Our multi-class boosting is solved in a single optimization problem. In order to share features across different classes, we introduce the mixed-norm regularization, which promotes group sparsity, into boosting. We then derive the Lagrange dual problems which enable us to design fully corrective multi-class algorithms using the primal-dual optimization technique. We show that sharing features across classes can improve classification performance and efficiency. We empirically show that in many cases, the proposed multi-class boosting generalizes better than a range of competing multi-class boosting algorithms due to the capability of feature sharing. Experimental results on machine learning data, visual scene and object recognition demonstrate the efficiency and effectiveness of proposed algorithms and validate our theoretical findings.-
dc.description.statementofresponsibilitySakrapee Paisitkriangkrai, Chunhua Shen and Anton van den Hengel-
dc.relation.ispartofseriesIEEE Conference on Computer Vision and Pattern Recognition-
dc.rightsCopyright IEEE-
dc.subjectmulti-class classification-
dc.subjectfeature sharing-
dc.subjectcolumn generation-
dc.subjectconvex optimization-
dc.titleSharing features in multi-class boosting via group sparsity-
dc.typeConference paper-
dc.contributor.conferenceIEEE Conference on Computer Vision and Pattern Recognition (25th : 2012 : Providence, Rhode Island)-
dc.identifier.orcidVan Den Hengel, A. [0000-0003-3027-8364]-
Appears in Collections:Aurora harvest
Computer Science publications

Files in This Item:
File Description SizeFormat 
hdl_69851.pdfAccepted version875.77 kBAdobe PDFView/Open

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.