Please use this identifier to cite or link to this item: https://hdl.handle.net/2440/70018
Citations
Scopus Web of Science® Altmetric
?
?
Type: Journal article
Title: Severity of salinity accurately detected and classified on a paddock scale with high resolution multispectral satellite imgery
Author: Setia, R.
Lewis, M.
Marschner, P.
Raja Segaran, R.
Summers, D.
Chittleborough, D.
Citation: Land Degradation and Development, 2013; 24(4):375-384
Publisher: John Wiley & Sons Ltd
Issue Date: 2013
ISSN: 1085-3278
1099-145X
Statement of
Responsibility: 
R. Setia, M. Lewis, P. Marschner, R. Raja Segaran, D. Summers, and D. Chittleborough
Abstract: We hypothesised that digital mapping of various forms of salt-affected soils using high resolution satellite imagery, supported by field studies, would be an efficient method to classify and map salinity, sodicity or both at paddock level, particularly in areas where salt-affected patches are small and the effort to map these by field-based soil survey methods alone would be inordinately time consuming. To test this hypothesis, QuickBird satellite data (pan-sharpened four band multispectral imagery) was used to map various forms of surface-expressed salinity in an agricultural area of South Australia. Ground-truthing was performed by collecting 160 soil samples over the study area of 159km2. Unsupervised classification of the imagery covering the study area allowed differentiation of severity levels of salt-affected soils, but these levels did not match those based on measured electrical conductivity (EC) and sodium adsorption ratio (SAR) of the soil samples, primarily because the expression of salinity was strongly influenced by paddock-level variations in crop type, growth and prior land management. Segmentation of the whole image into 450 paddocks and unsupervised classification using a paddock-by-paddock approach resulted in a more accurate discrimination of salinity and sodicity levels that was correlated with EC and SAR. Image-based classes discriminating severity levels of salt-affected soils were significantly related with EC but not with SAR. Of the spectral bands, bands 2 (green, 520-600nm) and 4 (near-infrared, 760-900nm) explained the majority of the variation (99 per cent) in the spectral values. Thus, paddock-by-paddock classification of QuickBird imagery has the potential to accurately delineate salinity at farm level, which will allow more informed decisions about sustainable agricultural management of soils. © 2011 John Wiley & Sons, Ltd.
Keywords: EC
multispectral
SAR
soil properties
soil salinity
unsupervised classification
Australia
rangeland salinisation
Rights: Copyright © 2011 John Wiley & Sons, Ltd.
DOI: 10.1002/ldr.1134
Appears in Collections:Aurora harvest
Environment Institute publications
Soil and Land Systems publications

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.