Please use this identifier to cite or link to this item: https://hdl.handle.net/2440/70225
Citations
Scopus Web of Science® Altmetric
?
?
Type: Journal article
Title: Screening for grain dormancy in segregating generations of dormant X non-dormant crosses in white-grained wheat (Triticum aestivum L.)
Author: Hickey, L.
Dieters, M.
DeLacy, I.
Christopher, M.
Kravchuk, O.
Banks, P.
Citation: Euphytica: international journal on plant breeding, 2010; 172(2):183-195
Publisher: Kluwer Academic Publ
Issue Date: 2010
ISSN: 0014-2336
1573-5060
Statement of
Responsibility: 
Lee T. Hickey, Mark J. Dieters, Ian H. DeLacy, Mandy J. Christopher, Olena Y. Kravchuk, Phillip M. Banks
Abstract: Pre-harvest sprouting (PHS) in wheat (Triticum aestivum L.) is a significant problem. Introgression of genes controlling grain dormancy into white-grained bread wheat is one means of improving resistance to PHS. In this study seven dormant (containing the SW95-50213 and AUS1408 sources) × non-dormant crosses were produced to investigate the effectiveness of selection for grain dormancy in early segregating generations. Each generation (F1-F4) was grown in a temperature controlled glasshouse with an extended photoperiod (i. e. continuous light). F2 and F3 generations were subject to selection. Five hundred harvest-ripe grains were tested for germination over a 14 day period, and the 100 most dormant grains were retained and grown-on to produce the next generation within each cross. The response to selection was assessed through analysis of the time to 50% germination (G50) in the F2, F3 and F4 generations. In addition, changes in marker class frequencies for two SSR markers (barc170 and gpw2279) flanking a known quantitative trait locus (QTL) for grain dormancy on chromosome 4A were assessed in DNA from F2 plants selected from early germinating (non-dormant) and late germinating (dormant) phenotypic extremes within each cross. Selection for grain dormancy in the F2 and F3 generations effectively recovered the dormant phenotype in all seven crosses, i. e. the F4 generation was not significantly different from the dormant parent. Further, selection based on individual F2 grains changed marker class frequencies for the 4A dormancy QTL; in most cases eliminating the marker class homozygous for the non-dormant alleles. Application of this screening method will enable breeders to better select for grain dormancy and may lead to development of new cultivars offering effective resistance to PHS in the near future. © Springer Science+Business Media B.V. 2009.
Keywords: Pre-harvest sprouting
Phenotypic selection
Single grain germination
Quantitative trait locus
Marker assisted selection
Transgressive segregation
Rights: © Springer Science+Business Media B.V. 2009
DOI: 10.1007/s10681-009-0028-z
Published version: http://dx.doi.org/10.1007/s10681-009-0028-z
Appears in Collections:Agriculture, Food and Wine publications
Aurora harvest

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.