Please use this identifier to cite or link to this item:
Scopus Web of Science® Altmetric
Type: Journal article
Title: Insulin-stimulated glucose uptake and pathways regulating energy metabolism in skeletal muscle cells: The effects of subcutaneous and visceral fat, and long-chain saturated, n-3 and n-6 polyunsaturated fatty acids
Author: Lam, Y.
Hatzinikolas, G.
Weir, J.
Janovska, A.
McAinch, A.
Game, P.
Meikle, P.
Wittert, G.
Citation: Biochimica et Biophysica Acta-Molecular and Cell Biology of Lipids, 2011; 1811(7-8):468-475
Publisher: Elsevier Science BV
Issue Date: 2011
ISSN: 1388-1981
Statement of
Y.Y. Lam, G. Hatzinikolas, J.M. Weir, A. Janovská, A.J. McAinch, P. Game, P.J. Meikle, G.A. Wittert
Abstract: <h4>Aims</h4>The study aims to determine the effect of long-chain saturated and polyunsaturated (PUFA) fatty acids, specifically palmitic acid (PA; 16:0), docosahexaenoic acid (DHA; 22:6n-3) and linoleic acid (LA; 18:2n-6), and their interactions with factors from adipose tissue, on insulin sensitivity and lipid metabolism in skeletal muscle.<h4>Methods</h4>L6 myotubes were cultured with PA, DHA or LA (0.4mmol/l), with or without conditioned media from human subcutaneous (SC) and visceral (IAB) fat. Insulin-stimulated glucose uptake, lipid content, mRNA expression of key genes involved in nutrient utilization and protein expression of inhibitor protein inhibitor kappa B (IκB)-α and mammalian target of rapamycin (mTOR) were measured.<h4>Results</h4>PA and IAB fat reduced insulin-stimulated glucose uptake and their combined effect was similar to that of PA alone. PA-induced insulin resistance was ameliorated by inhibiting the de novo synthesis of ceramide, IκBα degradation or mTOR activation. The PA effect was also partially reversed by DHA and completely by LA in the presence of SC fat. PA increased diacylglycerol content, which was reduced by LA and to a greater extent when either IAB or SC fat was also present. PA increased SCD1 whereas DHA and LA increased AMPKα2 mRNA. In the presence of SC or IAB fat, the combination of PA with either DHA or LA decreased SCD1 and increased AMPKα2 mRNA.<h4>Conclusions</h4>PA-induced insulin resistance in skeletal muscle involves inflammatory (nuclear factor kappa B/mTOR) and nutrient (ceramide) pathways. PUFAs promote pathways, at a transcriptional level, that increase fat oxidation and synergize with factors from SC fat to abrogate PA-induced insulin resistance.
Keywords: Insulin resistance; Lipid metabolism; Adipokine
Rights: Copyright © 2011 Elsevier B.V. All rights reserved.
RMID: 0020111147
DOI: 10.1016/j.bbalip.2011.04.011
Appears in Collections:Medicine publications

Files in This Item:
There are no files associated with this item.

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.