Please use this identifier to cite or link to this item: https://hdl.handle.net/2440/71372
Citations
Scopus Web of Science® Altmetric
?
?
Type: Journal article
Title: Inverse laplace transform for transient-state fluid line network simulation
Author: Zecchin, A.
Lambert, M.
Simpson, A.
Citation: Journal of Engineering Mechanics, 2012; 138(1):101-115
Publisher: ASCE-Amer Soc Civil Engineers
Issue Date: 2012
ISSN: 0733-9399
1943-7889
Statement of
Responsibility: 
Aaron C. Zecchin, Martin F. Lambert and Angus R. Simpson
Abstract: Inverse Laplace transform methods have a long history in the development of time-domain fluid line models. This paper presents a study combining the new Laplace-domain input/output (I/O) model derived from the network admittance matrix with the Fourier series expansion numerical inverse Laplace transform (NILT) to serve as a time-domain simulation model. A series of theorems are presented demonstrating the stability of the I/O model, which is important for the construction of the NILT method. In the previous work by the first author, the Fourier series expansion algorithm was studied, where qualitative relationships between the parameters and numerical errors were analyzed, and reliable parameter heuristics were developed. These heuristics are used for a series of numerical examples dealing with networks of 11, 35, 51, and 94 pipes by using five different pipe models. The examples are used as the basis from which the accuracy and numerical efficiency of the proposed NILT are compared to the standard method of characteristics (MOCs) model for transient pipeline networks. Findings show that, for all case studies considered, the proposed NILT is numerically efficient for the pipe types involving convolution operations, and it is accurate for networks composed of both linear and nonlinear pipe types.
Keywords: Pipelines
hydraulic transients
simulation
pipeline transients
inverse laplace transform
fluid line networks
Rights: © 2012 American Society of Civil Engineers
DOI: 10.1061/(ASCE)EM.1943-7889.0000311
Grant ID: ARC
Published version: http://dx.doi.org/10.1061/(asce)em.1943-7889.0000311
Appears in Collections:Aurora harvest 7
Civil and Environmental Engineering publications
Environment Institute publications

Files in This Item:
File Description SizeFormat 
hdl_71372.pdfAccepted version1.31 MBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.