Please use this identifier to cite or link to this item:
Scopus Web of Science® Altmetric
Type: Conference paper
Title: A fast incremental spectral clustering for large data sets
Author: Kong, T.
Tian, Y.
Shen, H.
Citation: Proceedings of the 12th International Conference on Parallell and Distributed Computing, Applications and Technologies, held in Gwangju, South Korea, 20-22 October, 2011: pp.1-5
Publisher: IEEE
Publisher Place: USA
Issue Date: 2011
ISBN: 9781457718076
Conference Name: International Conference on Parallel and Distributed Computing, Applications and Technologies (12th : 2011 : Gwangju, South Korea)
Statement of
Tengteng Kong, Ye Tian, Hong Shen
Abstract: Spectral clustering is an emerging research topic that has numerous applications, such as data dimension reduction and image segmentation. In spectral clustering, as new data points are added continuously, dynamic data sets are processed in an on-line way to avoid costly re-computation. In this paper, we propose a new representative measure to compress the original data sets and maintain a set of representative points by continuously updating Eigen-system with the incidence vector. According to these extracted points we generate instant cluster labels as new data points arrive. Our method is effective and able to process large data sets due to its low time complexity. Experimental results over various real evolutional data sets show that our method provides fast and relatively accurate results.
Keywords: Spectral Clustering; Incremental; Eigen-Gap; Representative Point
Rights: © 2011 IEEE
RMID: 0020117719
DOI: 10.1109/PDCAT.2011.4
Appears in Collections:Computer Science publications

Files in This Item:
There are no files associated with this item.

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.