Please use this identifier to cite or link to this item:
http://hdl.handle.net/2440/71900
Citations | ||
Scopus | Web of Science® | Altmetric |
---|---|---|
?
|
?
|
Type: | Conference paper |
Title: | Preventing identity disclosure in hypergraphs |
Author: | Li, Y. Shen, H. |
Citation: | Proceedings of the 11th IEEE International Conference on Data Mining Workshops, held in Vancouver, Canada, 11 December, 2011 / M. Spiliopoulou, H. Wang, D. Cook, J. Pei, W. Wang, O. Zaïane and X. Wu (eds.): pp.659-665 |
Publisher: | IEEE |
Publisher Place: | USA |
Issue Date: | 2011 |
ISBN: | 9781467300056 |
ISSN: | 1550-4786 |
Conference Name: | IEEE International Conference on Data Mining Workshops (11th : 2011 : Vancouver, Canada) |
Statement of Responsibility: | Yidong Li and Hong Shen |
Abstract: | Data publishing based on hypergraphs is becoming increasingly popular due to its power in representing multirelations among objects. However, security issues have been little studied on this subject, while most recent work only focuses on the protection of relational data or graphs. As a major privacy breach, identity disclosure reveals the identification of entities with certain background knowledge known by an adversary. In this paper, we first introduce a novel background knowledge attack model based on the property of hyperedge ranks, and formalize the rank-based hypergraph anonymization problem. We then propose a complete solution in a two-step framework: rank anonymization and hypergraph construction. We also take hypergraph clustering (known as community detection) as data utility into consideration, and discuss two metrics to quantify information loss incurred in the perturbation. Our approaches are effective in terms of efficacy, privacy and utility. The algorithms run in near-quadratic time on hypergraph size, and protect data from rank attacks with almost same utility preserved. The performances of the methods have been validated by extensive experiments on real-world datasets as well. Our rank-based attack model and algorithms for rank anonymization and hypergraph construction are, to our best knowledge, the first systematic study to privacy preserving for hypergraph-based data publishing. |
Keywords: | Identity disclosure; hypergraph clustering; private data publishing; anonymization; community detection |
Rights: | © 2011 IEEE |
RMID: | 0020117733 |
DOI: | 10.1109/ICDMW.2011.139 |
Appears in Collections: | Computer Science publications |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
RA_hdl_71900.pdf | Restricted Access | 232.06 kB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.