Please use this identifier to cite or link to this item: https://hdl.handle.net/2440/72988
Citations
Scopus Web of Science® Altmetric
?
?
Full metadata record
DC FieldValueLanguage
dc.contributor.authorRead, J.-
dc.contributor.authorHamilton, D.-
dc.contributor.authorDesai, A.-
dc.contributor.authorRose, K.-
dc.contributor.authorMacIntyre, S.-
dc.contributor.authorLenters, J.-
dc.contributor.authorSmyth, R.-
dc.contributor.authorHanson, P.-
dc.contributor.authorCole, J.-
dc.contributor.authorStaehr, P.-
dc.contributor.authorRusak, J.-
dc.contributor.authorPierson, D.-
dc.contributor.authorBrookes, J.-
dc.contributor.authorLaas, A.-
dc.contributor.authorWu, C.-
dc.date.issued2012-
dc.identifier.citationGeophysical Research Letters, 2012; 39(9):1-5-
dc.identifier.issn0094-8276-
dc.identifier.issn1944-8007-
dc.identifier.urihttp://hdl.handle.net/2440/72988-
dc.description.abstract<jats:p>High‐frequency physical observations from 40 temperate lakes were used to examine the relative contributions of wind shear (<jats:italic>u</jats:italic><jats:sub>*</jats:sub>) and convection (<jats:italic>w</jats:italic><jats:sub>*</jats:sub>) to turbulence in the surface mixed layer. Seasonal patterns of <jats:italic>u</jats:italic><jats:sub>*</jats:sub> and <jats:italic>w</jats:italic><jats:sub>*</jats:sub> were dissimilar; <jats:italic>u</jats:italic><jats:sub>*</jats:sub> was often highest in the spring, while <jats:italic>w</jats:italic><jats:sub>*</jats:sub>increased throughout the summer to a maximum in early fall. Convection was a larger mixed‐layer turbulence source than wind shear (<jats:italic>u</jats:italic><jats:sub>*</jats:sub>/<jats:italic>w</jats:italic><jats:sub>*</jats:sub> &lt; 0.75) for 18 of the 40 lakes, including all 11 lakes &lt;10 ha. As a consequence, the relative contribution of convection to the gas transfer velocity (<jats:italic>k</jats:italic>, estimated by the surface renewal model) was greater for small lakes. The average <jats:italic>k</jats:italic> was 0.54 m day<jats:sup>−1</jats:sup> for lakes &lt;10 ha. Because <jats:italic>u</jats:italic><jats:sub>*</jats:sub> and <jats:italic>w</jats:italic><jats:sub>*</jats:sub>differ in temporal pattern and magnitude across lakes, both convection and wind shear should be considered in future formulations of lake‐air gas exchange, especially for small lakes.</jats:p>-
dc.description.statementofresponsibilityJordan S. Read, David P. Hamilton, Ankur R. Desai, Kevin C. Rose, Sally MacIntyre, John D. Lenters, Robyn L. Smyth, Paul C. Hanson, Jonathan J. Cole, Peter A. Staehr, James A. Rusak, Donald C. Pierson, Justin D. Brookes, Alo Laas, and Chin H. Wu-
dc.language.isoen-
dc.publisherAmer Geophysical Union-
dc.rightsCopyright 2012 by the American Geophysical Union.-
dc.source.urihttp://dx.doi.org/10.1029/2012gl051886-
dc.subjectgas exchange-
dc.subjectturbulence-
dc.subjectwind shear-
dc.titleLake-size dependency of wind shear and convection as controls on gas exchange-
dc.typeJournal article-
dc.identifier.doi10.1029/2012GL051886-
pubs.publication-statusPublished-
dc.identifier.orcidBrookes, J. [0000-0001-8408-9142]-
Appears in Collections:Aurora harvest
Earth and Environmental Sciences publications
Environment Institute Leaders publications

Files in This Item:
File Description SizeFormat 
hdl_72988.pdfPublished version421.72 kBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.