Please use this identifier to cite or link to this item:
Scopus Web of Science® Altmetric
Type: Journal article
Title: Differential modulation of motor cortex excitability in BDNF Met allele carriers following experimentally induced and use-dependent plasticity
Author: Cirillo, J.
Hughes, J.
Ridding, M.
Thomas, P.
Semmler, J.
Citation: European Journal of Neuroscience, 2012; 36(5):2640-2649
Publisher: Blackwell Science Ltd
Issue Date: 2012
ISSN: 0953-816X
Statement of
John Cirillo, James Hughes, Michael Ridding, Paul Q. Thomas and John G. Semmler
Abstract: The purpose of this study was to investigate how healthy young subjects with one of three variants of the brain-derived neurotrophic factor (BDNF) gene modulate motor cortex excitability following experimentally induced and use-dependent plasticity interventions. Electromyographic recordings were obtained from the right first dorsal interosseous (FDI) muscle of 12 Val/Val, ten Val/Met and seven Met/Met genotypes (aged 18-39 years). Transcranial magnetic stimulation of the left hemisphere was used to assess changes in FDI motor-evoked potentials (MEPs) following three separate interventions involving paired associative stimulation, a simple ballistic task and complex visuomotor tracking task using the index finger. Val/Val subjects increased FDI MEPs following all interventions (≥ 25%, P < 0.01), whereas the Met allele carriers only showed increased MEPs after the simple motor task (≥ 26%, P < 0.01). In contrast to the simple motor task, there was no significant change in MEPs for the Val/Met subjects (7%, P = 0.50) and a reduction in MEPs for the Met/Met group (-38%, P < 0.01) following the complex motor task. Despite these differences in use-dependent plasticity, the performance of both motor tasks was not different between BDNF genotypes. We conclude that modulation of motor cortex excitability is strongly influenced by the BDNF polymorphism, with the greatest differences observed for the complex motor task. We also found unique motor cortex plasticity in the rarest form of the BDNF polymorphism (Met/Met subjects), which may have implications for functional recovery after disease or injury to the nervous system in these individuals.
Keywords: BDNF polymorphism; motor cortex; motor skill; transcranial magnetic stimulation
Rights: © 2012 The Authors
RMID: 0020121956
DOI: 10.1111/j.1460-9568.2012.08177.x
Appears in Collections:Obstetrics and Gynaecology publications

Files in This Item:
There are no files associated with this item.

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.