Please use this identifier to cite or link to this item:
Scopus Web of Science® Altmetric
Type: Journal article
Title: Physically-based modeling of topographic effects on spatial evapotranspiration and soil moisture patterns in complex terrain
Author: Liu, M.
Bardossy, A.
Li, J.
Jiang, Y.
Citation: Hydrology and Earth System Sciences Discussions, 2011; 8(4):7055-7090
Publisher: Copernicus GmbH
Issue Date: 2011
ISSN: 1812-2108
Statement of
M. Liu, A. Bárdossy, J. Li, and Y. Jiang
Abstract: Simulation with the Soil Water Atmosphere Plant (SWAP) model is performed to quantify the spatial variability of evapotranspiration (ET) and soil moisture content (SMC) caused by topography-induced spatial wind and radiation differences. The field scale SWAP model is applied in a distributed way, i.e. for each grid, assuming linear groundwater table, identical boundary conditions and no lateral flow. Input of spatial wind and solar radiation are obtained with the adapted r.sun model and the meso-scale METRAS PC model based on physical mechanisms respectively. Both potential and actual ET, as well as the individual components of evaporation and transpiration are calculated by the model. The numerical experiments are conducted for grids at two different resolutions (100 m and 1000 m) to evaluate the scale effects. At fine scale, both solar radiation and wind have a strong effect on spatial ET/SMC pattern, whereas at coarse scale, the wind effect dominates. The results show a strong spatial and temporal intra-catchment variability in daily/annual total ET and less variability in soil moisture. The spatial variability in ET is associated with a difference in total amount of runoff generated, which may lead to a significant consequence in catchment water balance, snowmelt and rainfall-runoff generation processes.
Rights: © Author(s) 2011. This work is distributedunder the Creative Commons Attribution 3.0 License.
RMID: 0020119555
DOI: 10.5194/hessd-8-7055-2011
Appears in Collections:Civil and Environmental Engineering publications

Files in This Item:
File Description SizeFormat 
hdl_73564.pdfPublished version1.37 MBAdobe PDFView/Open

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.