Please use this identifier to cite or link to this item: https://hdl.handle.net/2440/75852
Citations
Scopus Web of Science® Altmetric
?
?
Full metadata record
DC FieldValueLanguage
dc.contributor.authorReynolds, L.-
dc.contributor.authorWaycott, M.-
dc.contributor.authorMcGlathery, K.-
dc.contributor.authorOrth, R.-
dc.contributor.authorZieman, J.-
dc.date.issued2012-
dc.identifier.citationMarine Ecology: Progress Series, 2012; 448:223-233-
dc.identifier.issn0171-8630-
dc.identifier.issn1616-1599-
dc.identifier.urihttp://hdl.handle.net/2440/75852-
dc.description.abstractGenetic diversity is positively associated with plant fitness, stability, and the provision of ecosystem services. Preserving genetic diversity is therefore considered an important component of ecosystem restoration as well as a measure of its success. We examined the genetic diversity of restored Zostera marina meadows in a coastal bay system along the USA mid-Atlantic coast using microsatellite markers to compare donor and recipient meadows. We show that donor meadows in Chesapeake Bay have high genetic diversity and that this diversity is maintained in meadows restored with seeds in the Virginia coastal bays. No evidence of inbreeding depression was detected (FIS −0.2 to 0) in either donor or recipient meadows, which is surprising because high levels of inbreeding were expected following the population contractions that occurred in Chesapeake Bay populations due to disease and heat stress. Additionally, there was no evidence for selection of genotypes at the restoration sites, suggesting that as long as donor sites are chosen carefully, issues that diminish fitness and survival such as heterosis or out-breeding depression can be avoided. A cluster analysis showed that, in addition to the Chesapeake Bay populations that acted as donors, the Virginia coastal bay populations shared a genetic signal with Chincoteague Bay populations, their closest neighbor to the north, suggesting that natural recruitment into the area may be occurring and augmenting restored populations. We hypothesize that the high genetic diversity in seagrasses restored using seeds rather than adult plants confers a greater level of ecosystem resilience to the restored meadows.-
dc.description.statementofresponsibilityLaura K. Reynolds, Michelle Waycott, Karen J. McGlathery, Robert J. Orth, Joseph C. Zieman-
dc.language.isoen-
dc.publisherInter-research-
dc.rights© Inter-Research 2012-
dc.source.urihttp://dx.doi.org/10.3354/meps09386-
dc.subjectSeagrass-
dc.subjectZostera marina-
dc.subjectRestoration-
dc.subjectGenetic diversity-
dc.subjectMicrosatellite DNA-
dc.titleEelgrass restoration by seed maintains genetic diversity: case study from a coastal bay system-
dc.typeJournal article-
dc.identifier.doi10.3354/meps09386-
pubs.publication-statusPublished-
dc.identifier.orcidWaycott, M. [0000-0002-0822-0564]-
Appears in Collections:Aurora harvest
Earth and Environmental Sciences publications
Environment Institute Leaders publications

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.