Please use this identifier to cite or link to this item: http://hdl.handle.net/2440/77411
Citations
Scopus Web of Science® Altmetric
?
?
Full metadata record
DC FieldValueLanguage
dc.contributor.authorWang, Z.en
dc.contributor.authorShi, Q.en
dc.contributor.authorShen, C.en
dc.contributor.authorVan Den Hengel, A.en
dc.date.issued2013en
dc.identifier.citationProceedings, 2013 IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2013, 23-28 June 2013, Portland, Oregon, USA: pp. 1690-1697en
dc.identifier.isbn9780769549897en
dc.identifier.issn1063-6919en
dc.identifier.urihttp://hdl.handle.net/2440/77411-
dc.description.abstractMarkov Random Fields (MRFs) have been successfully applied to human activity modelling, largely due to their ability to model complex dependencies and deal with local uncertainty. However, the underlying graph structure is often manually specified, or automatically constructed by heuristics. We show, instead, that learning an MRF graph and performing MAP inference can be achieved simultaneously by solving a bilinear program. Equipped with the bilinear program based MAP inference for an unknown graph, we show how to estimate parameters efficiently and effectively with a latent structural SVM. We apply our techniques to predict sport moves (such as serve, volley in tennis) and human activity in TV episodes (such as kiss, hug and Hi-Five). Experimental results show the proposed method outperforms the state-of-the-art.en
dc.description.statementofresponsibilityZhenhua Wang, Qinfeng Shi, Chunhua Shen and Anton van den Hengelen
dc.description.urihttp://www.pamitc.org/cvpr13/en
dc.language.isoenen
dc.publisherIEEEen
dc.relation.ispartofseriesIEEE Conference on Computer Vision and Pattern Recognitionen
dc.rights©IEEEen
dc.subjectHuman activity recognition; MRF; bilinear programming, linear programmingen
dc.titleBilinear programming for human activity recognition with unknown MRF graphsen
dc.typeConference paperen
dc.identifier.rmid0020133292en
dc.contributor.conferenceIEEE Conference on Computer Vision and Pattern Recognition (26th : 2013 : Portland, Oregon)en
dc.identifier.doi10.1109/CVPR.2013.221en
dc.publisher.placeUnited States of Americaen
dc.identifier.pubid17160-
pubs.library.collectionComputer Science publicationsen
pubs.verification-statusVerifieden
pubs.publication-statusPublisheden
dc.identifier.orcidShi, Q. [0000-0002-9126-2107]en
dc.identifier.orcidShen, C. [0000-0002-8648-8718]en
dc.identifier.orcidVan Den Hengel, A. [0000-0003-3027-8364]en
Appears in Collections:Computer Science publications

Files in This Item:
File Description SizeFormat 
hdl_77411.pdfAccepted version2.78 MBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.